A Fetch-Based Statistical Method to Bias Correct and Downscale Wind Speed over Unresolved Water Bodies

A Fetch-Based Statistical Method to Bias Correct and Downscale Wind Speed over Unresolved Water... AbstractThis paper presents a method to bias correct and downscale wind speed over water bodies that are unresolved by numerical weather prediction (NWP) models and analyses. The dependency of wind speeds over water bodies to fetch length is investigated as a predictor of model wind speed error. Because model bias is found to be related to the forecast wind direction, a statistical method that uses the forecast fetch to remove wind speed bias is developed and tested. The method estimates wind speed bias using recent forecast errors from similar stations (i.e., those with comparable fetch lengths). As a result, the bias correction is not tied to local observations but instead to locations with similar land–water characteristics. Thus, it can also be used to downscale wind fields over inland and coastal water bodies. The fetch method is compared to four reference bias correction methods using one year’s worth of wind speed output from three NWP analyses in Florida. The fetch method yields a bias error near zero and results in a reduction of the mean absolute error that is comparable to the reference methods. The fetch method is then used to bias correct and downscale a coarse analysis to 500-m grid spacing over a coastal estuary in central Florida. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

A Fetch-Based Statistical Method to Bias Correct and Downscale Wind Speed over Unresolved Water Bodies

Loading next page...
 
/lp/ams/a-fetch-based-statistical-method-to-bias-correct-and-downscale-wind-jK0hzAfWPo
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0016.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper presents a method to bias correct and downscale wind speed over water bodies that are unresolved by numerical weather prediction (NWP) models and analyses. The dependency of wind speeds over water bodies to fetch length is investigated as a predictor of model wind speed error. Because model bias is found to be related to the forecast wind direction, a statistical method that uses the forecast fetch to remove wind speed bias is developed and tested. The method estimates wind speed bias using recent forecast errors from similar stations (i.e., those with comparable fetch lengths). As a result, the bias correction is not tied to local observations but instead to locations with similar land–water characteristics. Thus, it can also be used to downscale wind fields over inland and coastal water bodies. The fetch method is compared to four reference bias correction methods using one year’s worth of wind speed output from three NWP analyses in Florida. The fetch method yields a bias error near zero and results in a reduction of the mean absolute error that is comparable to the reference methods. The fetch method is then used to bias correct and downscale a coarse analysis to 500-m grid spacing over a coastal estuary in central Florida.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off