A Features-Based Assessment of the Evolution of Warm Season Precipitation Forecasts from the HRRR Model over Three Years of Development

A Features-Based Assessment of the Evolution of Warm Season Precipitation Forecasts from the HRRR... AbstractThe High Resolution Rapid Refresh (HRRR) model has been the National Weather Service’s (NWS) operational rapid update model since 2014. The HRRR has undergone continual development, including updates to the Weather Research and Forecasting (WRF) Model core, the data assimilation system, and the various physics packages in order to better represent atmospheric processes, with updated operational versions of the model being implemented approximately every spring. Given the model’s intent for use in convective precipitation forecasting, it is of interest to examine how forecasts of warm season precipitation have changed as a result of the continued model upgrades. A features-based assessment is performed on the first 6 h of HRRR quantitative precipitation forecasts (QPFs) from the 2013, 2014, and 2015 versions of the model over the U.S. central plains in an effort to understand how specific aspects of QPF performance have evolved as a result of continued model development. Significant bias changes were found with respect to precipitation intensity. Model upgrades that increased boundary layer stability and reduced the strength of the latent heating perturbations in the data assimilation were found to reduce southward biases in convective initiation, reduce the tendency for the model to overestimate heavy rainfall, and improve the representation of convective initiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

A Features-Based Assessment of the Evolution of Warm Season Precipitation Forecasts from the HRRR Model over Three Years of Development

Loading next page...
 
/lp/ams/a-features-based-assessment-of-the-evolution-of-warm-season-pbIF0R3Tlo
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0050.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe High Resolution Rapid Refresh (HRRR) model has been the National Weather Service’s (NWS) operational rapid update model since 2014. The HRRR has undergone continual development, including updates to the Weather Research and Forecasting (WRF) Model core, the data assimilation system, and the various physics packages in order to better represent atmospheric processes, with updated operational versions of the model being implemented approximately every spring. Given the model’s intent for use in convective precipitation forecasting, it is of interest to examine how forecasts of warm season precipitation have changed as a result of the continued model upgrades. A features-based assessment is performed on the first 6 h of HRRR quantitative precipitation forecasts (QPFs) from the 2013, 2014, and 2015 versions of the model over the U.S. central plains in an effort to understand how specific aspects of QPF performance have evolved as a result of continued model development. Significant bias changes were found with respect to precipitation intensity. Model upgrades that increased boundary layer stability and reduced the strength of the latent heating perturbations in the data assimilation were found to reduce southward biases in convective initiation, reduce the tendency for the model to overestimate heavy rainfall, and improve the representation of convective initiation.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Oct 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off