A Cross-Spectral Approach to Measure the Error Budget of the SWOT Altimetry Mission over the Ocean

A Cross-Spectral Approach to Measure the Error Budget of the SWOT Altimetry Mission over the Ocean AbstractThe future Surface Water Ocean Topography (SWOT) mission aims to observe water bodies and short-scale ocean surface topography with unprecedented spatial resolution and accuracy. However, the topography estimates will be contaminated by errors of various signals (geophysical and instrumental) featuring, in large part, strong dependencies on the radar range direction (cross track). This study shows that a cross-spectral analysis performed along track for all cross-track combinations can detect most of these errors and can provide estimates of their power spectral densities. From a series of outputs of the SWOT science team simulator, a cross-spectral method was developed to simulate the estimation of the error budget compared to the actual error budget in the simulator. The study determined that the error spectra of the dominant terms can be estimated at very high accuracy. Beyond the obvious applications for the future SWOT data calibration and validation, the spectral estimates of the error budget will have applications for state estimate problems using SWOT data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

A Cross-Spectral Approach to Measure the Error Budget of the SWOT Altimetry Mission over the Ocean

Loading next page...
 
/lp/ams/a-cross-spectral-approach-to-measure-the-error-budget-of-the-swot-RFBEXn4n92
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0061.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe future Surface Water Ocean Topography (SWOT) mission aims to observe water bodies and short-scale ocean surface topography with unprecedented spatial resolution and accuracy. However, the topography estimates will be contaminated by errors of various signals (geophysical and instrumental) featuring, in large part, strong dependencies on the radar range direction (cross track). This study shows that a cross-spectral analysis performed along track for all cross-track combinations can detect most of these errors and can provide estimates of their power spectral densities. From a series of outputs of the SWOT science team simulator, a cross-spectral method was developed to simulate the estimation of the error budget compared to the actual error budget in the simulator. The study determined that the error spectra of the dominant terms can be estimated at very high accuracy. Beyond the obvious applications for the future SWOT data calibration and validation, the spectral estimates of the error budget will have applications for state estimate problems using SWOT data.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Apr 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off