A Comparative Verification of High-Resolution Precipitation Forecasts Using Model Output Statistics

A Comparative Verification of High-Resolution Precipitation Forecasts Using Model Output Statistics AbstractVerification of localized events such as precipitation has become even more challenging with the advent of high-resolution mesoscale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this paper, a verification strategy based on model output statistics (MOS) is applied that aims to address both double-penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis, and lead time. The ELR equations are derived for predictands based on areal-calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the nonhydrostatic model Harmonie-AROME (2.5-km resolution), HIRLAM (11-km resolution), and the ECMWF model (16-km resolution), overall yielding similar Brier skill scores for the three postprocessed models, but somewhat larger differences for individual lead times. In addition, the fractions skill score is computed using the three deterministic forecasts, showing slightly higher skill for the Harmonie-AROME model. In other words, despite the realism of Harmonie-AROME precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the two lower-resolution models, at least in the Netherlands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

A Comparative Verification of High-Resolution Precipitation Forecasts Using Model Output Statistics

Loading next page...
 
/lp/ams/a-comparative-verification-of-high-resolution-precipitation-forecasts-HtpW0sLCWV
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0256.1
Publisher site
See Article on Publisher Site

Abstract

AbstractVerification of localized events such as precipitation has become even more challenging with the advent of high-resolution mesoscale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this paper, a verification strategy based on model output statistics (MOS) is applied that aims to address both double-penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis, and lead time. The ELR equations are derived for predictands based on areal-calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the nonhydrostatic model Harmonie-AROME (2.5-km resolution), HIRLAM (11-km resolution), and the ECMWF model (16-km resolution), overall yielding similar Brier skill scores for the three postprocessed models, but somewhat larger differences for individual lead times. In addition, the fractions skill score is computed using the three deterministic forecasts, showing slightly higher skill for the Harmonie-AROME model. In other words, despite the realism of Harmonie-AROME precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the two lower-resolution models, at least in the Netherlands.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Oct 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial