A Comparative Verification of High-Resolution Precipitation Forecasts Using Model Output Statistics

A Comparative Verification of High-Resolution Precipitation Forecasts Using Model Output Statistics AbstractVerification of localized events such as precipitation has become even more challenging with the advent of high-resolution mesoscale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this paper, a verification strategy based on model output statistics (MOS) is applied that aims to address both double-penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis, and lead time. The ELR equations are derived for predictands based on areal-calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the nonhydrostatic model Harmonie-AROME (2.5-km resolution), HIRLAM (11-km resolution), and the ECMWF model (16-km resolution), overall yielding similar Brier skill scores for the three postprocessed models, but somewhat larger differences for individual lead times. In addition, the fractions skill score is computed using the three deterministic forecasts, showing slightly higher skill for the Harmonie-AROME model. In other words, despite the realism of Harmonie-AROME precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the two lower-resolution models, at least in the Netherlands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

A Comparative Verification of High-Resolution Precipitation Forecasts Using Model Output Statistics

Loading next page...
 
/lp/ams/a-comparative-verification-of-high-resolution-precipitation-forecasts-HtpW0sLCWV
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0256.1
Publisher site
See Article on Publisher Site

Abstract

AbstractVerification of localized events such as precipitation has become even more challenging with the advent of high-resolution mesoscale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this paper, a verification strategy based on model output statistics (MOS) is applied that aims to address both double-penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis, and lead time. The ELR equations are derived for predictands based on areal-calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the nonhydrostatic model Harmonie-AROME (2.5-km resolution), HIRLAM (11-km resolution), and the ECMWF model (16-km resolution), overall yielding similar Brier skill scores for the three postprocessed models, but somewhat larger differences for individual lead times. In addition, the fractions skill score is computed using the three deterministic forecasts, showing slightly higher skill for the Harmonie-AROME model. In other words, despite the realism of Harmonie-AROME precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the two lower-resolution models, at least in the Netherlands.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Oct 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off