Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling

Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling Maize ( Zea mays ) Viviparous1 (VP1) and Arabidopsis ABI3 are orthologous transcription factors that regulate key aspects of plant seed development and ABA signaling. To understand VP1-regulated gene expression on a global scale, we have performed oligomicroarray analysis of transgenic Arabidopsis carrying 35S :: VP1 in an abi3 null mutant background. We have identified 353 VP1/ABA-regulated genes by GeneChip analysis. Seventy-three percent of the genes were affected by both VP1 and ABA in vegetative tissues, indicating a tight coupling between ABA signaling and VP1 function. A large number of seed-specific genes were ectopically expressed in vegetative tissue of 35S::VP1 plants consistent with evidence that VP1 and ABI3 are key determinants of seed-specific expression. ABI5 , a positive regulator of ABA signaling, was activated by VP1, indicating conservation of the feed-forward pathway mediated by ABI3. ABA induction of ABI1 and ABI2 , negative regulators of ABA signaling, was strongly inhibited by VP1, revealing a second pathway of feed-forward regulation. These results indicate that VP1 strongly modifies ABA signaling through feed-forward regulation of ABI1/ABI5-related genes. Of the 32 bZIP transcription factors represented on the GeneChip, genes in the ABI5 clade were specifically coregulated by ABA and VP1. Statistical analysis of 5′ upstream sequences of the VP1/ABA-regulated genes identified consensus abscisic responsive elements as an enriched element, indicating that many of the genes could be direct targets of the ABI5-related bZIPs. The Sph element is an enriched sequence motif in promoters of genes co-activated by ABA and VP1 but not in promoters of genes activated by ABA alone. This analysis reveals that distinct combinatorial patterns of promoter elements distinguish subclasses of VP1/ABA coregulated genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling

Loading next page...
 
/lp/american-society-of-plant-biologist/viviparous1-alters-global-gene-expression-patterns-through-regulation-OhnFIX2uE6
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.103.022475
Publisher site
See Article on Publisher Site

Abstract

Maize ( Zea mays ) Viviparous1 (VP1) and Arabidopsis ABI3 are orthologous transcription factors that regulate key aspects of plant seed development and ABA signaling. To understand VP1-regulated gene expression on a global scale, we have performed oligomicroarray analysis of transgenic Arabidopsis carrying 35S :: VP1 in an abi3 null mutant background. We have identified 353 VP1/ABA-regulated genes by GeneChip analysis. Seventy-three percent of the genes were affected by both VP1 and ABA in vegetative tissues, indicating a tight coupling between ABA signaling and VP1 function. A large number of seed-specific genes were ectopically expressed in vegetative tissue of 35S::VP1 plants consistent with evidence that VP1 and ABI3 are key determinants of seed-specific expression. ABI5 , a positive regulator of ABA signaling, was activated by VP1, indicating conservation of the feed-forward pathway mediated by ABI3. ABA induction of ABI1 and ABI2 , negative regulators of ABA signaling, was strongly inhibited by VP1, revealing a second pathway of feed-forward regulation. These results indicate that VP1 strongly modifies ABA signaling through feed-forward regulation of ABI1/ABI5-related genes. Of the 32 bZIP transcription factors represented on the GeneChip, genes in the ABI5 clade were specifically coregulated by ABA and VP1. Statistical analysis of 5′ upstream sequences of the VP1/ABA-regulated genes identified consensus abscisic responsive elements as an enriched element, indicating that many of the genes could be direct targets of the ABI5-related bZIPs. The Sph element is an enriched sequence motif in promoters of genes co-activated by ABA and VP1 but not in promoters of genes activated by ABA alone. This analysis reveals that distinct combinatorial patterns of promoter elements distinguish subclasses of VP1/ABA coregulated genes.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off