Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato Pto homolog that controls fenthion sensitivity.

Use of a gene expression system based on potato virus X to rapidly identify and characterize a... A novel transient gene expression system was used to study both the tomato disease resistance gene Pto and a Pto homolog designated Fen. The gene expression system was based on potato virus X (PVX). Tomato plants that were both susceptible to strains of Pseudomonas syringae pv tomato carrying the corresponding avirulence gene avrPto and insensitive to the insecticide fenthion were infected with in vitro-generated transcripts of PVX derivatives containing either Pto or Fen. Expression of the Pto gene from the virus genome failed to elicit P.s. tomato resistance, indicating that the PVX system is not suitable for the study of Pto. However, expression of the Fen gene resulted in sensitivity to fenthion. The utility of the PVX gene expression system was further demonstrated through structure/function studies of the Fen gene. A correlation was shown between Fen protein kinase activity and the ability of this protein to confer fenthion sensitivity to tomato. Furthermore, it was demonstrated that mutation of a putative N-terminal myristoylation site, proposed to be involved in membrane targeting, rendered the Fen protein inactive. Analysis of a Pto-Fen chimeric gene allowed the fenthion sensitivity domain to be localized to the C-terminal part of the Fen protein. Interestingly, expression of the Fen kinase from the PVX genome in Nicotiana spp resulted in a fenthion-independent necrotic response. Our results support the involvement of the Fen gene in a signal transduction pathway(s). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato Pto homolog that controls fenthion sensitivity.

Loading next page...
 
/lp/american-society-of-plant-biologist/use-of-a-gene-expression-system-based-on-potato-virus-x-to-rapidly-NUZuh3A9eb
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1995 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.7.3.249
Publisher site
See Article on Publisher Site

Abstract

A novel transient gene expression system was used to study both the tomato disease resistance gene Pto and a Pto homolog designated Fen. The gene expression system was based on potato virus X (PVX). Tomato plants that were both susceptible to strains of Pseudomonas syringae pv tomato carrying the corresponding avirulence gene avrPto and insensitive to the insecticide fenthion were infected with in vitro-generated transcripts of PVX derivatives containing either Pto or Fen. Expression of the Pto gene from the virus genome failed to elicit P.s. tomato resistance, indicating that the PVX system is not suitable for the study of Pto. However, expression of the Fen gene resulted in sensitivity to fenthion. The utility of the PVX gene expression system was further demonstrated through structure/function studies of the Fen gene. A correlation was shown between Fen protein kinase activity and the ability of this protein to confer fenthion sensitivity to tomato. Furthermore, it was demonstrated that mutation of a putative N-terminal myristoylation site, proposed to be involved in membrane targeting, rendered the Fen protein inactive. Analysis of a Pto-Fen chimeric gene allowed the fenthion sensitivity domain to be localized to the C-terminal part of the Fen protein. Interestingly, expression of the Fen kinase from the PVX genome in Nicotiana spp resulted in a fenthion-independent necrotic response. Our results support the involvement of the Fen gene in a signal transduction pathway(s).

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off