Transport of DNA into the nuclei of xenopus oocytes by a modified VirE2 protein of Agrobacterium.

Transport of DNA into the nuclei of xenopus oocytes by a modified VirE2 protein of Agrobacterium. We used Agrobacterium T-DNA nuclear transport to examine the specificity of nuclear targeting between plants and animals and the nuclear import of DNA by a specialized transport protein. Two karyophilic Agrobacterium virulence (Vir) proteins, VirD2 and VirE2, which presumably associate with the transported T-DNA and function in many plant species, were microinjected into Drosophila embryos and Xenopus oocytes. In both animal systems, VirD2 localized to the cell nuclei and VirE2 remained exclusively cytoplasmic, suggesting that VirE2 nuclear localization signals may be plant specific. Repositioning one amino acid residue within VirE2 nuclear localization signals enabled them to function in animal cells. The modified VirE2 protein bound DNA and actively transported it into the nuclei of Xenopus oocytes. These observations suggest a functional difference in nuclear import between animals and plants and show that DNA can be transported into the cell nucleus via a protein-specific pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Transport of DNA into the nuclei of xenopus oocytes by a modified VirE2 protein of Agrobacterium.

Loading next page...
 
/lp/american-society-of-plant-biologist/transport-of-dna-into-the-nuclei-of-xenopus-oocytes-by-a-modified-LSpi5o12SM
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1996 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.8.3.363
Publisher site
See Article on Publisher Site

Abstract

We used Agrobacterium T-DNA nuclear transport to examine the specificity of nuclear targeting between plants and animals and the nuclear import of DNA by a specialized transport protein. Two karyophilic Agrobacterium virulence (Vir) proteins, VirD2 and VirE2, which presumably associate with the transported T-DNA and function in many plant species, were microinjected into Drosophila embryos and Xenopus oocytes. In both animal systems, VirD2 localized to the cell nuclei and VirE2 remained exclusively cytoplasmic, suggesting that VirE2 nuclear localization signals may be plant specific. Repositioning one amino acid residue within VirE2 nuclear localization signals enabled them to function in animal cells. The modified VirE2 protein bound DNA and actively transported it into the nuclei of Xenopus oocytes. These observations suggest a functional difference in nuclear import between animals and plants and show that DNA can be transported into the cell nucleus via a protein-specific pathway.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off