The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein

The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin... The TRANSPARENT TESTA GLABRA1 ( TTG1 ) locus regulates several developmental and biochemical pathways in Arabidopsis, including the formation of hairs on leaves, stems, and roots, and the production of seed mucilage and anthocyanin pigments. The TTG1 locus has been isolated by positional cloning, and its identity was confirmed by complementation of a ttg1 mutant. The locus encodes a protein of 341 amino acid residues with four WD40 repeats. The protein is similar to AN11, a regulator of anthocyanin biosynthesis in petunia, and more distantly related to those of the β subunits of heterotrimeric G proteins, which suggests a role for TTG1 in signal transduction to downstream transcription factors. The 1.5-kb TTG1 transcript is present in all major organs of Arabidopsis. Sequence analysis of six mutant alleles has identified base changes producing truncations or single amino acid changes in the TTG1 protein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein

Loading next page...
 
/lp/american-society-of-plant-biologist/the-transparent-testa-glabra1-locus-which-regulates-trichome-6uxmzaT1oG
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.11.7.1337
Publisher site
See Article on Publisher Site

Abstract

The TRANSPARENT TESTA GLABRA1 ( TTG1 ) locus regulates several developmental and biochemical pathways in Arabidopsis, including the formation of hairs on leaves, stems, and roots, and the production of seed mucilage and anthocyanin pigments. The TTG1 locus has been isolated by positional cloning, and its identity was confirmed by complementation of a ttg1 mutant. The locus encodes a protein of 341 amino acid residues with four WD40 repeats. The protein is similar to AN11, a regulator of anthocyanin biosynthesis in petunia, and more distantly related to those of the β subunits of heterotrimeric G proteins, which suggests a role for TTG1 in signal transduction to downstream transcription factors. The 1.5-kb TTG1 transcript is present in all major organs of Arabidopsis. Sequence analysis of six mutant alleles has identified base changes producing truncations or single amino acid changes in the TTG1 protein.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off