The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of ALTERNATIVE OXIDASE1a

The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of... Plant cells integrate signals from external sources and from organelles to regulate gene expression, referred to as anterograde and retrograde signaling, respectively. Functional characterization of the promoter of ALTERNATIVE OXIDASE1a ( AOX1a ) from Arabidopsis ( Arabidopsis thaliana ), a marker for mitochondrial retrograde response, was carried out by testing the ability of the AOX1a promoter to drive expression of the reporter gene GUS. This approach identified a strong repressor element, designated the B element, that was necessary for an increased promoter activity in response to the mitochondrial complex I inhibitor rotenone. This element overlaps with a previously identified potential binding site for the transcription factor ABSCISIC ACID INSENSITIVE4 (ABI4). AOX1a promoter activity was fully derepressed in abi4 mutants and was unresponsive to rotenone. Furthermore, deletion of the B element of the AOX1a promoter resulted in increased GUS staining activity compared to the wild-type promoter in transgenic plants. Binding of the ABI4 transcription factor to this region of the AOX1a promoter was demonstrated by electromobility shift and yeast one-hybrid assays. Analysis of transcript abundance for AOX1a in abi4 mutant lines revealed significantly increased levels of AOX1a mRNA that could not be further induced by rotenone, consistent with the role of ABI4 as a repressor that is derepressed in response to rotenone. These results show that ABI4 plays a central role in mediating mitochondrial retrograde signals to induce the expression of AOX1a . Furthermore, they provide a molecular link between mitochondrial and chloroplast retrograde signaling, as ABI4 has been previously shown to act downstream of at least two chloroplast retrograde signaling pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of ALTERNATIVE OXIDASE1a

Loading next page...
 
/lp/american-society-of-plant-biologist/the-transcription-factor-abi4-is-a-regulator-of-mitochondrial-vC6v0lscNW
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.109.139782
Publisher site
See Article on Publisher Site

Abstract

Plant cells integrate signals from external sources and from organelles to regulate gene expression, referred to as anterograde and retrograde signaling, respectively. Functional characterization of the promoter of ALTERNATIVE OXIDASE1a ( AOX1a ) from Arabidopsis ( Arabidopsis thaliana ), a marker for mitochondrial retrograde response, was carried out by testing the ability of the AOX1a promoter to drive expression of the reporter gene GUS. This approach identified a strong repressor element, designated the B element, that was necessary for an increased promoter activity in response to the mitochondrial complex I inhibitor rotenone. This element overlaps with a previously identified potential binding site for the transcription factor ABSCISIC ACID INSENSITIVE4 (ABI4). AOX1a promoter activity was fully derepressed in abi4 mutants and was unresponsive to rotenone. Furthermore, deletion of the B element of the AOX1a promoter resulted in increased GUS staining activity compared to the wild-type promoter in transgenic plants. Binding of the ABI4 transcription factor to this region of the AOX1a promoter was demonstrated by electromobility shift and yeast one-hybrid assays. Analysis of transcript abundance for AOX1a in abi4 mutant lines revealed significantly increased levels of AOX1a mRNA that could not be further induced by rotenone, consistent with the role of ABI4 as a repressor that is derepressed in response to rotenone. These results show that ABI4 plays a central role in mediating mitochondrial retrograde signals to induce the expression of AOX1a . Furthermore, they provide a molecular link between mitochondrial and chloroplast retrograde signaling, as ABI4 has been previously shown to act downstream of at least two chloroplast retrograde signaling pathways.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off