The sfr6 Mutation in Arabidopsis Suppresses Low-Temperature Induction of Genes Dependent on the CRT/DRE Sequence Motif

The sfr6 Mutation in Arabidopsis Suppresses Low-Temperature Induction of Genes Dependent on the... The sfr mutations, which result in sensitivity to freezing after cold acclimation, define genes that are required for freezing tolerance. We tested plants homozygous for mutations sfr2 to sfr7 for cold-induced gene expression and found that sfr6 plants were deficient in cold-inducible expression of the genes KIN1 , COR15a , and LTI78 , which all contain the C repeat/dehydration-responsive element (CRT/DRE) motif in their promoters. Similarly, sfr6 plants failed to induce KIN1 normally in response to either osmotic stress or the application of abscisic acid. In contrast, cold-inducible expression of genes CBF1 , CBF2 , CBF3 , and ATP5CS1 , which lack the CRT/DRE motif, was not affected. The freezing-sensitive phenotype that defines sfr6 also was found to be tightly linked to the gene expression phenotype. To determine whether the failure of cold induction of CRT/DRE–containing genes in sfr6 was due to altered low-temperature calcium signaling, cold-induced cytosolic-free calcium ((Ca 2+ ) cyt ) elevations were investigated in the sfr6 mutant, but these were found to be indistinguishable from those of the wild type. We discuss the possibilities that CRT/DRE binding proteins (such as CBF1) require activation to play a role in transcription and that the SFR6 protein is a vital component of their activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The sfr6 Mutation in Arabidopsis Suppresses Low-Temperature Induction of Genes Dependent on the CRT/DRE Sequence Motif

Loading next page...
 
/lp/american-society-of-plant-biologist/the-sfr6-mutation-in-arabidopsis-suppresses-low-temperature-induction-OE0lAWsfIO
Publisher
American Society of Plant Biologists
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.11.5.875
Publisher site
See Article on Publisher Site

Abstract

The sfr mutations, which result in sensitivity to freezing after cold acclimation, define genes that are required for freezing tolerance. We tested plants homozygous for mutations sfr2 to sfr7 for cold-induced gene expression and found that sfr6 plants were deficient in cold-inducible expression of the genes KIN1 , COR15a , and LTI78 , which all contain the C repeat/dehydration-responsive element (CRT/DRE) motif in their promoters. Similarly, sfr6 plants failed to induce KIN1 normally in response to either osmotic stress or the application of abscisic acid. In contrast, cold-inducible expression of genes CBF1 , CBF2 , CBF3 , and ATP5CS1 , which lack the CRT/DRE motif, was not affected. The freezing-sensitive phenotype that defines sfr6 also was found to be tightly linked to the gene expression phenotype. To determine whether the failure of cold induction of CRT/DRE–containing genes in sfr6 was due to altered low-temperature calcium signaling, cold-induced cytosolic-free calcium ((Ca 2+ ) cyt ) elevations were investigated in the sfr6 mutant, but these were found to be indistinguishable from those of the wild type. We discuss the possibilities that CRT/DRE binding proteins (such as CBF1) require activation to play a role in transcription and that the SFR6 protein is a vital component of their activation.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off