The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development

The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved... Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 ( RML1 ) gene are unable to establish an active postembryonic meristem in the root apex. This mutation abolishes cell division in the root but not in the shoot. We report the molecular cloning of the RML1 gene, which encodes the first enzyme of glutathione (GSH) biosynthesis, γ-glutamylcysteine synthetase, and which is allelic to CADMIUM SENSITIVE2 . The phenotype of the rml1 mutant, which was also evident in the roots of wild-type Arabidopsis and tobacco treated with an inhibitor of GSH biosynthesis, could be relieved by applying GSH to rml1 seedlings. By using a synchronized tobacco cell suspension culture, we showed that the G 1 -to-S phase transition requires an adequate level of GSH. These observations suggest the existence of a GSH-dependent developmental pathway essential for initiation and maintenance of cell division during postembryonic root development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development

Loading next page...
 
/lp/american-society-of-plant-biologist/the-root-meristemless1-cadmium-sensitive2-gene-defines-a-glutathione-Pyn9b4jr4n
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.12.1.97
Publisher site
See Article on Publisher Site

Abstract

Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 ( RML1 ) gene are unable to establish an active postembryonic meristem in the root apex. This mutation abolishes cell division in the root but not in the shoot. We report the molecular cloning of the RML1 gene, which encodes the first enzyme of glutathione (GSH) biosynthesis, γ-glutamylcysteine synthetase, and which is allelic to CADMIUM SENSITIVE2 . The phenotype of the rml1 mutant, which was also evident in the roots of wild-type Arabidopsis and tobacco treated with an inhibitor of GSH biosynthesis, could be relieved by applying GSH to rml1 seedlings. By using a synchronized tobacco cell suspension culture, we showed that the G 1 -to-S phase transition requires an adequate level of GSH. These observations suggest the existence of a GSH-dependent developmental pathway essential for initiation and maintenance of cell division during postembryonic root development.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off