The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-Like Gene Family in Tomato

The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-Like... An ethylene-inducing xylanase (EIX) is a potent elicitor of plant defense responses in specific cultivars of tobacco ( Nicotiana tabacum ) and tomato ( Lycopersicon esculentum ). The LeEix locus in tomatoes was characterized by map-based cloning, which led to the identification of a novel gene cluster from which two members ( LeEix1 and LeEix2 ) were isolated. Similar to the tomato Ve resistance genes in tomato plants, the deduced amino acid sequences encoded by LeEix1 and LeEix2 contain a Leu zipper, an extracellular Leu-rich repeat domain with glycosylation signals, a transmembrane domain, and a C-terminal domain with a mammalian endocytosis signal. Silencing expression of the LeEix genes prevented the binding of EIX to cells of an EIX-responsive plant and thus inhibited the hypersensitive response. Overexpression of either LeEix1 or LeEix2 genes in EIX-nonresponsive tobacco plants enabled the binding of EIX, although only LeEix2 could transmit the signal that induced the hypersensitive response. Overexpressing LeEix2 in mammalian COS-7 cells enables binding of EIX, indicating physical interaction between the EIX elicitor and LeEix2 gene product. Structural analysis of the LeEix proteins suggests that they belong to a class of cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Mutating the endocytosis signal in LeEix2 (Tyr 993 to Ala) abolished its ability to induce the hypersensitive response, suggesting that endocytosis plays a key role in the signal transduction pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-Like Gene Family in Tomato

Jun 1, 2004

Loading next page...
 
/lp/american-society-of-plant-biologist/the-receptor-for-the-fungal-elicitor-ethylene-inducing-xylanase-is-a-BExpNrbSAC
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.022475
Publisher site
See Article on Publisher Site

Abstract

An ethylene-inducing xylanase (EIX) is a potent elicitor of plant defense responses in specific cultivars of tobacco ( Nicotiana tabacum ) and tomato ( Lycopersicon esculentum ). The LeEix locus in tomatoes was characterized by map-based cloning, which led to the identification of a novel gene cluster from which two members ( LeEix1 and LeEix2 ) were isolated. Similar to the tomato Ve resistance genes in tomato plants, the deduced amino acid sequences encoded by LeEix1 and LeEix2 contain a Leu zipper, an extracellular Leu-rich repeat domain with glycosylation signals, a transmembrane domain, and a C-terminal domain with a mammalian endocytosis signal. Silencing expression of the LeEix genes prevented the binding of EIX to cells of an EIX-responsive plant and thus inhibited the hypersensitive response. Overexpression of either LeEix1 or LeEix2 genes in EIX-nonresponsive tobacco plants enabled the binding of EIX, although only LeEix2 could transmit the signal that induced the hypersensitive response. Overexpressing LeEix2 in mammalian COS-7 cells enables binding of EIX, indicating physical interaction between the EIX elicitor and LeEix2 gene product. Structural analysis of the LeEix proteins suggests that they belong to a class of cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Mutating the endocytosis signal in LeEix2 (Tyr 993 to Ala) abolished its ability to induce the hypersensitive response, suggesting that endocytosis plays a key role in the signal transduction pathway.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off