The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis

The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis From an enhancer trap screen for genes expressed in Arabidopsis embryos, we identified a gene expressed from the octant stage onward in the boundary between the two presumptive cotyledons and in a variety of postembryonic organ and meristem boundaries. This gene, CUP-SHAPED COTYLEDON3 ( CUC3 ), encodes a putative NAC-domain transcription factor that is homologous with CUC1 and CUC2. Analysis of a CUC3 hypomorph and a putative cuc3 null mutant indicates that CUC3 function is partially redundant with that of CUC1 and CUC2 in the establishment of the cotyledon boundary and the shoot meristem, thus revealing an even higher degree of redundancy in this class of genes than was thought previously. The CUC3 expression pattern, the cuc3 phenotypes, and CUC3 expression in a series of shoot meristem mutants and transgenes suggest a primary role for CUC 3 in the establishment of boundaries that contain cells with low proliferation and/or differentiation rates. The CUC -mediated establishment of such boundaries may be essential for the initiation of shoot meristems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis

Loading next page...
 
/lp/american-society-of-plant-biologist/the-cup-shaped-cotyledon3-gene-is-required-for-boundary-and-shoot-AvJ1ncgwSG
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.012203
Publisher site
See Article on Publisher Site

Abstract

From an enhancer trap screen for genes expressed in Arabidopsis embryos, we identified a gene expressed from the octant stage onward in the boundary between the two presumptive cotyledons and in a variety of postembryonic organ and meristem boundaries. This gene, CUP-SHAPED COTYLEDON3 ( CUC3 ), encodes a putative NAC-domain transcription factor that is homologous with CUC1 and CUC2. Analysis of a CUC3 hypomorph and a putative cuc3 null mutant indicates that CUC3 function is partially redundant with that of CUC1 and CUC2 in the establishment of the cotyledon boundary and the shoot meristem, thus revealing an even higher degree of redundancy in this class of genes than was thought previously. The CUC3 expression pattern, the cuc3 phenotypes, and CUC3 expression in a series of shoot meristem mutants and transgenes suggest a primary role for CUC 3 in the establishment of boundaries that contain cells with low proliferation and/or differentiation rates. The CUC -mediated establishment of such boundaries may be essential for the initiation of shoot meristems.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off