The Arabidopsis NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the COR/RD Genes

The Arabidopsis NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf... Leaf aging is a highly regulated developmental process, which is also influenced profoundly by diverse environmental conditions. Accumulating evidence in recent years supports that plant responsiveness to abiotic stress is intimately related with leaf longevity. However, molecular mechanisms underlying the signaling crosstalks and regulatory schemes are yet unknown. In this work, we demonstrate that an abscisic acid (ABA)–responsive NAC transcription factor VND-INTERACTING2 (VNI2) integrates ABA-mediated abiotic stress signals into leaf aging by regulating a subset of COLD-REGULATED ( COR ) and RESPONSIVE TO DEHYDRATION ( RD ) genes. The VNI2 gene was induced by high salinity in an ABA-dependent manner. In addition, spatial and temporal expression patterns of the VNI2 gene are correlated with leaf aging and senescence. Accordingly, leaf aging was delayed in transgenic plants overexpressing the VNI2 gene but significantly accelerated in a VNI2 -deficient mutant. The VNI2 transcription factor regulates the COR and RD genes by binding directly to their promoters. Notably, transgenic plants overexpressing the COR or RD genes exhibited prolonged leaf longevity. These observations indicate that the VNI2 transcription factor serves as a molecular link that integrates plant responses to environmental stresses into modulation of leaf longevity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

The Arabidopsis NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the COR/RD Genes

Loading next page...
 
/lp/american-society-of-plant-biologist/the-arabidopsis-nac-transcription-factor-vni2-integrates-abscisic-acid-8OhBZCXyws
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.111.084913
Publisher site
See Article on Publisher Site

Abstract

Leaf aging is a highly regulated developmental process, which is also influenced profoundly by diverse environmental conditions. Accumulating evidence in recent years supports that plant responsiveness to abiotic stress is intimately related with leaf longevity. However, molecular mechanisms underlying the signaling crosstalks and regulatory schemes are yet unknown. In this work, we demonstrate that an abscisic acid (ABA)–responsive NAC transcription factor VND-INTERACTING2 (VNI2) integrates ABA-mediated abiotic stress signals into leaf aging by regulating a subset of COLD-REGULATED ( COR ) and RESPONSIVE TO DEHYDRATION ( RD ) genes. The VNI2 gene was induced by high salinity in an ABA-dependent manner. In addition, spatial and temporal expression patterns of the VNI2 gene are correlated with leaf aging and senescence. Accordingly, leaf aging was delayed in transgenic plants overexpressing the VNI2 gene but significantly accelerated in a VNI2 -deficient mutant. The VNI2 transcription factor regulates the COR and RD genes by binding directly to their promoters. Notably, transgenic plants overexpressing the COR or RD genes exhibited prolonged leaf longevity. These observations indicate that the VNI2 transcription factor serves as a molecular link that integrates plant responses to environmental stresses into modulation of leaf longevity.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off