Suppression and Restoration of Lesion Formation in Arabidopsis lsd Mutants.

Suppression and Restoration of Lesion Formation in Arabidopsis lsd Mutants. Systemic acquired resistance (SAR) is a broad-spectrum, systemic defense response that is activated in many plant species after pathogen infection. We have previously described Arabidopsis mutants that constitutively express SAR and concomitantly develop lesions simulating disease (lsd). Here, we describe two new mutants, lsd6 and lsd7, that develop spontaneous necrotic lesions and possess elevated levels of salicylic acid (SA) as well as heightened disease resistance, similar to the previously characterized lsd and accelerated cell death (acd2) mutants. Genetic analysis of lsd6 and lsd7 showed that the mutant phenotypes segregated as simple dominant traits. When crossed with transgenic Arabidopsis plants containing the SA-degrading enzyme salicylate hydroxylase, the F1 progeny showed suppression of both SAR gene expression and resistance. In addition, salicylate hydroxylase suppressed lesion formation in the F1 progeny, suggesting that SA or some SA-dependent process may have a role in pathogen-associated cell death. Surprisingly, lesions were restored in the lsd6 F1 progeny after the application of either 2,6-dichloroisonicotinic acid or SA. Lesions were not restored by treatment with either compound in the lsd7 F1 plants. Our findings demonstrate that steps early in the signal transduction pathway leading to SAR and disease resistance are potentiated by later events, suggesting feedback control of lesion formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Suppression and Restoration of Lesion Formation in Arabidopsis lsd Mutants.

Loading next page...
 
/lp/american-society-of-plant-biologist/suppression-and-restoration-of-lesion-formation-in-arabidopsis-lsd-ejbyVFmwhJ
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1995 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.7.12.2013
Publisher site
See Article on Publisher Site

Abstract

Systemic acquired resistance (SAR) is a broad-spectrum, systemic defense response that is activated in many plant species after pathogen infection. We have previously described Arabidopsis mutants that constitutively express SAR and concomitantly develop lesions simulating disease (lsd). Here, we describe two new mutants, lsd6 and lsd7, that develop spontaneous necrotic lesions and possess elevated levels of salicylic acid (SA) as well as heightened disease resistance, similar to the previously characterized lsd and accelerated cell death (acd2) mutants. Genetic analysis of lsd6 and lsd7 showed that the mutant phenotypes segregated as simple dominant traits. When crossed with transgenic Arabidopsis plants containing the SA-degrading enzyme salicylate hydroxylase, the F1 progeny showed suppression of both SAR gene expression and resistance. In addition, salicylate hydroxylase suppressed lesion formation in the F1 progeny, suggesting that SA or some SA-dependent process may have a role in pathogen-associated cell death. Surprisingly, lesions were restored in the lsd6 F1 progeny after the application of either 2,6-dichloroisonicotinic acid or SA. Lesions were not restored by treatment with either compound in the lsd7 F1 plants. Our findings demonstrate that steps early in the signal transduction pathway leading to SAR and disease resistance are potentiated by later events, suggesting feedback control of lesion formation.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off