Stable Transformation of Soybean Callus by DNA-Coated Gold Particles

Stable Transformation of Soybean Callus by DNA-Coated Gold Particles Immature soybean ( Glycine max L.) embryos from commercially important cultivars were the targets of rapidly accelerated, DNA-coated, gold particles. Protoplasts were prepared from these tissues and propagated in culture under selection conditions for the introduced neomycin phosphotransferase II gene. Kanamycin-resistant calli were obtained at a rate of approximately 10 −5 . Enzyme assays and Southern blot hybridization confirmed the expression of the foreign gene and its stable integration into the soybean genome. Our results show that particle acceleration can be used for the introduction of foreign DNA into the soybean genome and indicate the technique may be useful in the recovery of engineered plants by transformation of regenerable tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Stable Transformation of Soybean Callus by DNA-Coated Gold Particles

Loading next page...
 
/lp/american-society-of-plant-biologist/stable-transformation-of-soybean-callus-by-dna-coated-gold-particles-Vs4aD09lMH
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1988 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.87.3.671
Publisher site
See Article on Publisher Site

Abstract

Immature soybean ( Glycine max L.) embryos from commercially important cultivars were the targets of rapidly accelerated, DNA-coated, gold particles. Protoplasts were prepared from these tissues and propagated in culture under selection conditions for the introduced neomycin phosphotransferase II gene. Kanamycin-resistant calli were obtained at a rate of approximately 10 −5 . Enzyme assays and Southern blot hybridization confirmed the expression of the foreign gene and its stable integration into the soybean genome. Our results show that particle acceleration can be used for the introduction of foreign DNA into the soybean genome and indicate the technique may be useful in the recovery of engineered plants by transformation of regenerable tissues.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off