Specific Gene Silencing by Artificial MicroRNAs in Physcomitrella patens: An Alternative to Targeted Gene Knockouts

Specific Gene Silencing by Artificial MicroRNAs in Physcomitrella patens: An Alternative to... MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNAs processed from nuclear-encoded transcripts, which include a characteristic hairpin-like structure. MiRNAs control the expression of target transcripts by binding to reverse complementary sequences directing cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence within miRNA precursor genes, while maintaining the pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. The moss Physcomitrella patens exhibits the unique feature of a highly efficient homologous recombination mechanism, which allows for the generation of targeted gene knockout lines. However, the completion of the Physcomitrella genome necessitates the development of alternative techniques to speed up reverse genetics analyses and to allow for more flexible inactivation of genes. To prove the adaptability of amiRNA expression in Physcomitrella , we designed two amiRNAs, targeting the gene PpFtsZ2-1 , which is indispensable for chloroplast division, and the gene PpGNT1 encoding an N -acetylglucosaminyltransferase. Both amiRNAs were expressed from the Arabidopsis ( Arabidopsis thaliana ) miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knock down of the cognate target mRNAs. Furthermore, chloroplast division was impeded in PpFtsZ2-1 -amiRNA lines that phenocopied PpFtsZ2-1 knockout mutants. We also provide evidence for the amplification of the initial amiRNA signal by secondary transitive small interfering RNAs, although these small interfering RNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Specific Gene Silencing by Artificial MicroRNAs in Physcomitrella patens: An Alternative to Targeted Gene Knockouts

Loading next page...
 
/lp/american-society-of-plant-biologist/specific-gene-silencing-by-artificial-micrornas-in-physcomitrella-uDka96YZMc
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.108.128025
Publisher site
See Article on Publisher Site

Abstract

MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNAs processed from nuclear-encoded transcripts, which include a characteristic hairpin-like structure. MiRNAs control the expression of target transcripts by binding to reverse complementary sequences directing cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence within miRNA precursor genes, while maintaining the pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. The moss Physcomitrella patens exhibits the unique feature of a highly efficient homologous recombination mechanism, which allows for the generation of targeted gene knockout lines. However, the completion of the Physcomitrella genome necessitates the development of alternative techniques to speed up reverse genetics analyses and to allow for more flexible inactivation of genes. To prove the adaptability of amiRNA expression in Physcomitrella , we designed two amiRNAs, targeting the gene PpFtsZ2-1 , which is indispensable for chloroplast division, and the gene PpGNT1 encoding an N -acetylglucosaminyltransferase. Both amiRNAs were expressed from the Arabidopsis ( Arabidopsis thaliana ) miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knock down of the cognate target mRNAs. Furthermore, chloroplast division was impeded in PpFtsZ2-1 -amiRNA lines that phenocopied PpFtsZ2-1 knockout mutants. We also provide evidence for the amplification of the initial amiRNA signal by secondary transitive small interfering RNAs, although these small interfering RNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off