Silencing of Retrotransposons in Arabidopsis and Reactivation by the ddm1 Mutation

Silencing of Retrotransposons in Arabidopsis and Reactivation by the ddm1 Mutation Gene silencing associated with repeated DNA sequences has been reported for many eukaryotes, including plants. However, its biological significance remains to be determined. One important function that has been proposed is the suppression of transposons. Here, we address transposon suppression by examining the behavior of the tobacco retrotransposon Tto1 and endogenous retrotransposons in Arabidopsis. After an initial increase in copy number because of active transposition in the Arabidopsis genome, Tto1 became silent. The amount of transcript was reduced, and the inactivated Tto1 became methylated. This silencing correlated with an increase in copy number. These phenomena mimic repeat-induced gene silencing. The homozygous ddm1 (for decrease in DNA methylation) mutation of Arabidopsis results in genomic DNA hypomethylation and the release of silencing in repeated genes. To investigate the role of DNA methylation and the gene-silencing machinery in the suppression of Tto1 , we introduced the ddm1 mutation into an Arabidopsis line carrying inactivated Tto1 copies. In the homozygous ddm1 background, Tto1 became hypomethylated and transcriptionally and transpositionally active. In addition, one of the newly isolated endogenous Arabidopsis retrotransposon families, named Tar17 , also became hypomethylated and transcriptionally active in the ddm1 mutant background. Our results suggest that the inactivation of retrotransposons and the silencing of repeated genes have mechanisms in common. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Silencing of Retrotransposons in Arabidopsis and Reactivation by the ddm1 Mutation

Loading next page...
 
/lp/american-society-of-plant-biologist/silencing-of-retrotransposons-in-arabidopsis-and-reactivation-by-the-420ojavDcW
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.12.3.357
Publisher site
See Article on Publisher Site

Abstract

Gene silencing associated with repeated DNA sequences has been reported for many eukaryotes, including plants. However, its biological significance remains to be determined. One important function that has been proposed is the suppression of transposons. Here, we address transposon suppression by examining the behavior of the tobacco retrotransposon Tto1 and endogenous retrotransposons in Arabidopsis. After an initial increase in copy number because of active transposition in the Arabidopsis genome, Tto1 became silent. The amount of transcript was reduced, and the inactivated Tto1 became methylated. This silencing correlated with an increase in copy number. These phenomena mimic repeat-induced gene silencing. The homozygous ddm1 (for decrease in DNA methylation) mutation of Arabidopsis results in genomic DNA hypomethylation and the release of silencing in repeated genes. To investigate the role of DNA methylation and the gene-silencing machinery in the suppression of Tto1 , we introduced the ddm1 mutation into an Arabidopsis line carrying inactivated Tto1 copies. In the homozygous ddm1 background, Tto1 became hypomethylated and transcriptionally and transpositionally active. In addition, one of the newly isolated endogenous Arabidopsis retrotransposon families, named Tar17 , also became hypomethylated and transcriptionally active in the ddm1 mutant background. Our results suggest that the inactivation of retrotransposons and the silencing of repeated genes have mechanisms in common.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off