Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley

Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley

Loading next page...
 
/lp/american-society-of-plant-biologist/shoot-turgor-does-not-limit-shoot-growth-of-nacl-affected-wheat-and-RNvgMVB4vZ
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1985 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.77.4.869
Publisher site
See Article on Publisher Site

Abstract

The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off