SERK and APOSTART. Candidate Genes for Apomixis in Poa pratensis

SERK and APOSTART. Candidate Genes for Apomixis in Poa pratensis Seed production generally requires the mating of opposite sex gametes. Apomixis, an asexual mode of reproduction, avoids both meiotic reduction and egg fertilization. The essential feature of apomixis is that an embryo is formed autonomously by parthenogenesis from an unreduced egg of an embryo sac generated through apomeiosis. If apomixis were well understood and harnessed, it could be exploited to indefinitely propagate superior hybrids or specific genotypes bearing complex gene sets. A more profound knowledge of the mechanisms that regulate reproductive events would contribute fundamentally to understanding the genetic control of the apomictic pathway. In Poa pratensis , we isolated and characterized two genes, PpSERK ( SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE ) and APOSTART . These full-length genes were recovered by rapid amplification of cDNA ends and their temporal and spatial expression patterns were assessed by reverse transcription-polymerase chain reaction and in situ hybridization, respectively. The expression of PpSERK and APOSTART differed in apomictic and sexual genotypes. Their putative role in cell-signaling transduction cascades and trafficking events required during sporogenesis, gametogenesis, and embryogenesis in plants is reported and discussed. We propose that, in nucellar cells of apomictic genotypes, PpSERK is the switch that channels embryo sac development and that it may also redirect signaling gene products to compartments other than their typical ones. The involvement of APOSTART in meiosis and programmed cell death is also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Loading next page...
 
/lp/american-society-of-plant-biologist/serk-and-apostart-candidate-genes-for-apomixis-in-poa-pratensis-nuFnL4vpy4
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.105.062059
Publisher site
See Article on Publisher Site

Abstract

Seed production generally requires the mating of opposite sex gametes. Apomixis, an asexual mode of reproduction, avoids both meiotic reduction and egg fertilization. The essential feature of apomixis is that an embryo is formed autonomously by parthenogenesis from an unreduced egg of an embryo sac generated through apomeiosis. If apomixis were well understood and harnessed, it could be exploited to indefinitely propagate superior hybrids or specific genotypes bearing complex gene sets. A more profound knowledge of the mechanisms that regulate reproductive events would contribute fundamentally to understanding the genetic control of the apomictic pathway. In Poa pratensis , we isolated and characterized two genes, PpSERK ( SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE ) and APOSTART . These full-length genes were recovered by rapid amplification of cDNA ends and their temporal and spatial expression patterns were assessed by reverse transcription-polymerase chain reaction and in situ hybridization, respectively. The expression of PpSERK and APOSTART differed in apomictic and sexual genotypes. Their putative role in cell-signaling transduction cascades and trafficking events required during sporogenesis, gametogenesis, and embryogenesis in plants is reported and discussed. We propose that, in nucellar cells of apomictic genotypes, PpSERK is the switch that channels embryo sac development and that it may also redirect signaling gene products to compartments other than their typical ones. The involvement of APOSTART in meiosis and programmed cell death is also discussed.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off