Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function

Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function The ubiquitin-related protein RUB/Nedd8 is conjugated to members of the cullin family of proteins in plants, animals, and fungi. In Arabidopsis, the RUB conjugation pathway consists of a heterodimeric E1 (AXR1-ECR1) and a RUB-E2 called RCE1. The cullin CUL1 is a subunit in SCF-type ubiquitin protein ligases (E3s), including the SCF TIR1 complex, which is required for response to the plant hormone auxin. Our previous studies showed that conjugation of RUB to CUL1 is required for normal SCF TIR1 function. The RING-H2 finger protein RBX1 is a subunit of SCF complexes in fungi and animals. The function of RBX1 is to bind the ubiquitin-conjugating enzyme E2 and bring it into close proximity with the E3 substrate. We have identified two Arabidopsis genes encoding RING-H2 proteins related to human RBX1. Studies of one of these proteins indicate that, as in animals and fungi, Arabidopsis RBX1 is an SCF subunit. Reduced RBX1 levels result in severe defects in growth and development. Overexpression of RBX1 increases RUB modification of CUL1. This effect is associated with reduced auxin response and severe growth defects similar to those observed in axr1 mutants. As in the axr1 mutants, RBX1 overexpression stabilizes the SCF TIR1 substrate AXR2/IAA7. The RBX1 protein is a component of SCF complexes in Arabidopsis. In addition to its direct role in SCF E3 ligase activity, RBX1 promotes the RUB modification of CUL1 and probably functions as an E3 ligase in the RUB pathway. Hypermodification of CUL1 disrupts SCF TIR1 function, suggesting that cycles of RUB conjugation and removal are important for SCF activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function

Loading next page...
 
/lp/american-society-of-plant-biologist/role-of-the-arabidopsis-ring-h2-protein-rbx1-in-rub-modification-and-aZ0X4rG3W1
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.003178
Publisher site
See Article on Publisher Site

Abstract

The ubiquitin-related protein RUB/Nedd8 is conjugated to members of the cullin family of proteins in plants, animals, and fungi. In Arabidopsis, the RUB conjugation pathway consists of a heterodimeric E1 (AXR1-ECR1) and a RUB-E2 called RCE1. The cullin CUL1 is a subunit in SCF-type ubiquitin protein ligases (E3s), including the SCF TIR1 complex, which is required for response to the plant hormone auxin. Our previous studies showed that conjugation of RUB to CUL1 is required for normal SCF TIR1 function. The RING-H2 finger protein RBX1 is a subunit of SCF complexes in fungi and animals. The function of RBX1 is to bind the ubiquitin-conjugating enzyme E2 and bring it into close proximity with the E3 substrate. We have identified two Arabidopsis genes encoding RING-H2 proteins related to human RBX1. Studies of one of these proteins indicate that, as in animals and fungi, Arabidopsis RBX1 is an SCF subunit. Reduced RBX1 levels result in severe defects in growth and development. Overexpression of RBX1 increases RUB modification of CUL1. This effect is associated with reduced auxin response and severe growth defects similar to those observed in axr1 mutants. As in the axr1 mutants, RBX1 overexpression stabilizes the SCF TIR1 substrate AXR2/IAA7. The RBX1 protein is a component of SCF complexes in Arabidopsis. In addition to its direct role in SCF E3 ligase activity, RBX1 promotes the RUB modification of CUL1 and probably functions as an E3 ligase in the RUB pathway. Hypermodification of CUL1 disrupts SCF TIR1 function, suggesting that cycles of RUB conjugation and removal are important for SCF activity.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off