Responses of Halophytes to High Salinities and Low Water Potentials

Responses of Halophytes to High Salinities and Low Water Potentials The effects of nonsaline polyethylene glycol (PEG)-6000 and saline seawater solutions of comparable osmotic potential on the concentrations of organic solutes and inorganic ions in the tissues of halophytes ( Plantago maritima L., Triglochin maritima L., Limonium vulgare Mill., Halimione portulacoides (L.) Aell ) have been investigated. Studies were made to determine whether high salinities induce specific ion effects that are absent in plants grown in nonsaline solutions of comparable osmotic potential. Over-all, the responses of each species to the two different treatments (seawater or PEG) are similar; the accumulation of organic solutes (compatible osmotica) in tissues is primarily correlated with a decrease in the osmotic potential of culture solutions. Depending on the species, sorbitol, proline, reducing sugars, quaternary ammonium compounds, and α-amino nitrogen accumulate in tissues as the water potential of the tissues falls. Within a species there are differences in the concentrations of inorganic ions and organic solutes between roots and shoots of plants grown at high salinities or at high concentrations of PEG. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Responses of Halophytes to High Salinities and Low Water Potentials

Loading next page...
 
/lp/american-society-of-plant-biologist/responses-of-halophytes-to-high-salinities-and-low-water-potentials-boGmN0nWoh
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1979 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
DOI
10.1104/pp.64.6.989
Publisher site
See Article on Publisher Site

Abstract

The effects of nonsaline polyethylene glycol (PEG)-6000 and saline seawater solutions of comparable osmotic potential on the concentrations of organic solutes and inorganic ions in the tissues of halophytes ( Plantago maritima L., Triglochin maritima L., Limonium vulgare Mill., Halimione portulacoides (L.) Aell ) have been investigated. Studies were made to determine whether high salinities induce specific ion effects that are absent in plants grown in nonsaline solutions of comparable osmotic potential. Over-all, the responses of each species to the two different treatments (seawater or PEG) are similar; the accumulation of organic solutes (compatible osmotica) in tissues is primarily correlated with a decrease in the osmotic potential of culture solutions. Depending on the species, sorbitol, proline, reducing sugars, quaternary ammonium compounds, and α-amino nitrogen accumulate in tissues as the water potential of the tissues falls. Within a species there are differences in the concentrations of inorganic ions and organic solutes between roots and shoots of plants grown at high salinities or at high concentrations of PEG.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off