Resistance to Botrytis cinerea in sitiens, an Abscisic Acid-Deficient Tomato Mutant, Involves Timely Production of Hydrogen Peroxide and Cell Wall Modifications in the Epidermis

Resistance to Botrytis cinerea in sitiens, an Abscisic Acid-Deficient Tomato Mutant, Involves... Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea , are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato ( Solanum lycopersicum ) mutant, which is highly resistant to B. cinerea , accumulation of hydrogen peroxide (H 2 O 2 ) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens , H 2 O 2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H 2 O 2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H 2 O 2 -dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Resistance to Botrytis cinerea in sitiens, an Abscisic Acid-Deficient Tomato Mutant, Involves Timely Production of Hydrogen Peroxide and Cell Wall Modifications in the Epidermis

Loading next page...
 
/lp/american-society-of-plant-biologist/resistance-to-botrytis-cinerea-in-sitiens-an-abscisic-acid-deficient-38KASZxNLP
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.107.099226
Publisher site
See Article on Publisher Site

Abstract

Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea , are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato ( Solanum lycopersicum ) mutant, which is highly resistant to B. cinerea , accumulation of hydrogen peroxide (H 2 O 2 ) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens , H 2 O 2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H 2 O 2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H 2 O 2 -dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea .

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off