Potato Virus X Amplicons in Arabidopsis Mediate Genetic and Epigenetic Gene Silencing

Potato Virus X Amplicons in Arabidopsis Mediate Genetic and Epigenetic Gene Silencing Amplicon transgenes from potato virus X (PVX) are based on a modified version of the viral genome and are efficient activators of post-transcriptional gene silencing (PTGS). To determine whether PVX amplicons activate PTGS in Arabidopsis, we used constructs based on the genome of PVX carrying a green fluorescent protein ( GFP ) reporter gene. Our analysis of the transgene phenotype exploited previous observations indicating that PTGS is associated with short 25-nucleotide RNA species, transgene methylation, and homology-dependent virus resistance. We also used the ability of turnip mosaic virus to suppress gene silencing as a means of dissecting stages of the mechanism. The results showed that a PVX:GFP amplicon induces weak PTGS and that this PTGS was enhanced in the presence of a GFP reporter gene. Our interpretation of these data is that the PTGS induced by the amplicon was genetically determined and equivalent to the initiation stage of the PTGS mechanism. The PTGS induced by the combined amplicon and reporter gene was equivalent to the maintenance stage and was associated with an epigenetic conversion of the transgene. The distinction between genetic and epigenetic PTGS explains the well-characterized effects of transgene dosage on PTGS that have been previously interpreted in terms of RNA expression thresholds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Potato Virus X Amplicons in Arabidopsis Mediate Genetic and Epigenetic Gene Silencing

Loading next page...
 
/lp/american-society-of-plant-biologist/potato-virus-x-amplicons-in-arabidopsis-mediate-genetic-and-epigenetic-00UE8bJGlJ
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.12.3.369
Publisher site
See Article on Publisher Site

Abstract

Amplicon transgenes from potato virus X (PVX) are based on a modified version of the viral genome and are efficient activators of post-transcriptional gene silencing (PTGS). To determine whether PVX amplicons activate PTGS in Arabidopsis, we used constructs based on the genome of PVX carrying a green fluorescent protein ( GFP ) reporter gene. Our analysis of the transgene phenotype exploited previous observations indicating that PTGS is associated with short 25-nucleotide RNA species, transgene methylation, and homology-dependent virus resistance. We also used the ability of turnip mosaic virus to suppress gene silencing as a means of dissecting stages of the mechanism. The results showed that a PVX:GFP amplicon induces weak PTGS and that this PTGS was enhanced in the presence of a GFP reporter gene. Our interpretation of these data is that the PTGS induced by the amplicon was genetically determined and equivalent to the initiation stage of the PTGS mechanism. The PTGS induced by the combined amplicon and reporter gene was equivalent to the maintenance stage and was associated with an epigenetic conversion of the transgene. The distinction between genetic and epigenetic PTGS explains the well-characterized effects of transgene dosage on PTGS that have been previously interpreted in terms of RNA expression thresholds.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off