Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco

Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in... Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment of systemic acquired resistance (SAR), since resistance induced by the acidic elicitin, capsicein, is not accompanied by the development of visible symptoms on the leaves. Both elicitins trigger the coordinate accumulation of transcripts from nine genes, previously described to be expressed during establishment of SAR. Additionally, elicitin treatment leads to the activation of the multiple response gene str 246. In leaves, transcript accumulation was found to be higher in all cases in response to cryptogein compared to capsicein treatment. These results, along with northern hybridization analysis following infiltration of leaves with cryptogein, indicate that SAR genes appear to be expressed locally, corresponding to necrosis formation as well as systemically during induction of resistance. To our knowledge, elicitins are the only well-characterized, pathogen-derived molecules that trigger SAR in a plant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco

Loading next page...
 
/lp/american-society-of-plant-biologist/physiological-and-molecular-characteristics-of-elicitin-induced-gX0ZChyaAj
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1996 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
DOI
10.1104/pp.110.2.365
Publisher site
See Article on Publisher Site

Abstract

Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment of systemic acquired resistance (SAR), since resistance induced by the acidic elicitin, capsicein, is not accompanied by the development of visible symptoms on the leaves. Both elicitins trigger the coordinate accumulation of transcripts from nine genes, previously described to be expressed during establishment of SAR. Additionally, elicitin treatment leads to the activation of the multiple response gene str 246. In leaves, transcript accumulation was found to be higher in all cases in response to cryptogein compared to capsicein treatment. These results, along with northern hybridization analysis following infiltration of leaves with cryptogein, indicate that SAR genes appear to be expressed locally, corresponding to necrosis formation as well as systemically during induction of resistance. To our knowledge, elicitins are the only well-characterized, pathogen-derived molecules that trigger SAR in a plant.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off