Overexpression of Arabidopsis Hexokinase in Tomato Plants Inhibits Growth, Reduces Photosynthesis, and Induces Rapid Senescence

Overexpression of Arabidopsis Hexokinase in Tomato Plants Inhibits Growth, Reduces... Sugars are key regulatory molecules that affect diverse processes in higher plants. Hexokinase is the first enzyme in hexose metabolism and may be a sugar sensor that mediates sugar regulation. We present evidence that hexokinase is involved in sensing endogenous levels of sugars in photosynthetic tissues and that it participates in the regulation of senescence, photosynthesis, and growth in seedlings as well as in mature plants. Transgenic tomato plants overexpressing the Arabidopsis hexokinase-encoding gene AtHXK1 were produced. Independent transgenic plants carrying single copies of AtHXK1 were characterized by growth inhibition, the degree of which was found to correlate directly to the expression and activity of AtHXK1 . Reciprocal grafting experiments suggested that the inhibitory effect occurred when AtHXK1 was expressed in photosynthetic tissues. Accordingly, plants with increased AtHXK1 activity had reduced chlorophyll content in their leaves, reduced photosynthesis rates, and reduced photochemical quantum efficiency of photosystem II reaction centers compared with plants without increased AtHXK1 activity. In addition, the transgenic plants underwent rapid senescence, suggesting that hexokinase is also involved in senescence regulation. Fruit weight, starch content in young fruits, and total soluble solids in mature fruits were also reduced in the transgenic plants. The results indicate that endogenous hexokinase activity is not rate limiting for growth; rather, they support the role of hexokinase as a regulatory enzyme in photosynthetic tissues, in which it regulates photosynthesis, growth, and senescence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Overexpression of Arabidopsis Hexokinase in Tomato Plants Inhibits Growth, Reduces Photosynthesis, and Induces Rapid Senescence

Loading next page...
 
/lp/american-society-of-plant-biologist/overexpression-of-arabidopsis-hexokinase-in-tomato-plants-inhibits-JT4rLp07wn
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.11.7.1253
Publisher site
See Article on Publisher Site

Abstract

Sugars are key regulatory molecules that affect diverse processes in higher plants. Hexokinase is the first enzyme in hexose metabolism and may be a sugar sensor that mediates sugar regulation. We present evidence that hexokinase is involved in sensing endogenous levels of sugars in photosynthetic tissues and that it participates in the regulation of senescence, photosynthesis, and growth in seedlings as well as in mature plants. Transgenic tomato plants overexpressing the Arabidopsis hexokinase-encoding gene AtHXK1 were produced. Independent transgenic plants carrying single copies of AtHXK1 were characterized by growth inhibition, the degree of which was found to correlate directly to the expression and activity of AtHXK1 . Reciprocal grafting experiments suggested that the inhibitory effect occurred when AtHXK1 was expressed in photosynthetic tissues. Accordingly, plants with increased AtHXK1 activity had reduced chlorophyll content in their leaves, reduced photosynthesis rates, and reduced photochemical quantum efficiency of photosystem II reaction centers compared with plants without increased AtHXK1 activity. In addition, the transgenic plants underwent rapid senescence, suggesting that hexokinase is also involved in senescence regulation. Fruit weight, starch content in young fruits, and total soluble solids in mature fruits were also reduced in the transgenic plants. The results indicate that endogenous hexokinase activity is not rate limiting for growth; rather, they support the role of hexokinase as a regulatory enzyme in photosynthetic tissues, in which it regulates photosynthesis, growth, and senescence.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off