Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color

Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color The shape and color of flowers are important for plant reproduction because they attract pollinators such as insects and birds. Therefore, it is thought that alterations in these traits may result in the attraction of different pollinators, genetic isolation, and ultimately, (sympatric) speciation. Petunia integrifolia and P. axillaris bear flowers with different shapes and colors that appear to be visited by different insects. The anthocyanin2 ( an2 ) locus, a regulator of the anthocyanin biosynthetic pathway, is the main determinant of color differences. Here, we report an analysis of molecular events at the an2 locus that occur during Petunia spp evolution. We isolated an2 by transposon tagging and found that it encodes a MYB domain protein, indicating that it is a transcription factor. Analysis of P. axillaris subspecies with white flowers showed that they contain an2 - alleles with two alternative frameshifts at one site, apparently caused by the insertion and subsequent excision of a transposon. A third an2 - allele has a nonsense mutation elsewhere, indicating that it arose independently. The distribution of polymorphisms in an2 - alleles suggests that the loss of an2 function and the consequent changes in floral color were not the primary cause for genetic separation of P. integrifolia and P. axillaris. Rather, they were events that occurred late in the speciation process, possibly to reinforce genetic isolation and complete speciation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color

Loading next page...
 
/lp/american-society-of-plant-biologist/molecular-analysis-of-the-anthocyanin2-gene-of-petunia-and-its-role-in-Tee06EbIRj
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.11.8.1433
Publisher site
See Article on Publisher Site

Abstract

The shape and color of flowers are important for plant reproduction because they attract pollinators such as insects and birds. Therefore, it is thought that alterations in these traits may result in the attraction of different pollinators, genetic isolation, and ultimately, (sympatric) speciation. Petunia integrifolia and P. axillaris bear flowers with different shapes and colors that appear to be visited by different insects. The anthocyanin2 ( an2 ) locus, a regulator of the anthocyanin biosynthetic pathway, is the main determinant of color differences. Here, we report an analysis of molecular events at the an2 locus that occur during Petunia spp evolution. We isolated an2 by transposon tagging and found that it encodes a MYB domain protein, indicating that it is a transcription factor. Analysis of P. axillaris subspecies with white flowers showed that they contain an2 - alleles with two alternative frameshifts at one site, apparently caused by the insertion and subsequent excision of a transposon. A third an2 - allele has a nonsense mutation elsewhere, indicating that it arose independently. The distribution of polymorphisms in an2 - alleles suggests that the loss of an2 function and the consequent changes in floral color were not the primary cause for genetic separation of P. integrifolia and P. axillaris. Rather, they were events that occurred late in the speciation process, possibly to reinforce genetic isolation and complete speciation.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off