Modeling C and N Transport to Developing Soybean Fruits

Modeling C and N Transport to Developing Soybean Fruits Xylem sap and phloem exudates from detached leaves and fruit tips were collected and analyzed during early pod-fill in nodulated soybeans ( Glycine max (L.) Merr. cv Wilkin) grown without (−N) and with (+N) NH 4 NO 3 . Ureides were the predominant from (91%) of N transported in the xylem of −N plants, while amides (45%) and nitrate (23%) accounted for most of the N in the xylem of +N plants. Amino acids (44%) and ureides (36%) were the major N forms exported in phloem from leaves in −N plants, but amides (63%) were most important in +N plants. Based on the composition of fruit tip phloem, ureides (55% and 33%) and amides (26% and 47%) accounted for the majority of N imported by fruits of −N and +N plants, respectively. C:N weight ratios were lowest in xylem exudate (1.37 and 1.32), highest in petiole phloem (24.5 and 26.0), and intermediate in fruit tip exudate (12.6 and 12.1) for the −N and +N treatments, respectively. The ratios were combined with data on fruit growth and respiration to construct a model of C and N transport to developing fruits. The model indicates xylem to phloem transfer provides 35% to 52% of fruit N. Results suggest the phloem entering fruits oversupplies their N requirement so that 13% of the N imported is exported from fruit in the xylem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Modeling C and N Transport to Developing Soybean Fruits

Loading next page...
 
/lp/american-society-of-plant-biologist/modeling-c-and-n-transport-to-developing-soybean-fruits-8yxv9di1Mb
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1982 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.70.5.1290
Publisher site
See Article on Publisher Site

Abstract

Xylem sap and phloem exudates from detached leaves and fruit tips were collected and analyzed during early pod-fill in nodulated soybeans ( Glycine max (L.) Merr. cv Wilkin) grown without (−N) and with (+N) NH 4 NO 3 . Ureides were the predominant from (91%) of N transported in the xylem of −N plants, while amides (45%) and nitrate (23%) accounted for most of the N in the xylem of +N plants. Amino acids (44%) and ureides (36%) were the major N forms exported in phloem from leaves in −N plants, but amides (63%) were most important in +N plants. Based on the composition of fruit tip phloem, ureides (55% and 33%) and amides (26% and 47%) accounted for the majority of N imported by fruits of −N and +N plants, respectively. C:N weight ratios were lowest in xylem exudate (1.37 and 1.32), highest in petiole phloem (24.5 and 26.0), and intermediate in fruit tip exudate (12.6 and 12.1) for the −N and +N treatments, respectively. The ratios were combined with data on fruit growth and respiration to construct a model of C and N transport to developing fruits. The model indicates xylem to phloem transfer provides 35% to 52% of fruit N. Results suggest the phloem entering fruits oversupplies their N requirement so that 13% of the N imported is exported from fruit in the xylem.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off