Light Intensity-Induced Changes in cab mRNA and Light Harvesting Complex II Apoprotein Levels in the Unicellular Chlorophyte Dunaliella tertiolecta

Light Intensity-Induced Changes in cab mRNA and Light Harvesting Complex II Apoprotein Levels in... During a transition from high growth irradiance (700 micromoles quanta per square meter per second) to low growth irradiance (70 micromoles quanta per square meter per second), the unicellular marine chlorophyte Dunaliella tertiolecta Butcher increases the cellular pool size of the light-harvesting complex of photosystem II (LHC II). We showed that the increase in LHC II apoproteins and in chlorophyll content per cell is preceded by an approximately fourfold increase in cab mRNA. The increase in cab mRNA is detectable within 1.5 hours following a shift from high to low light intensity. An increase in the relative abundance of cab mRNA was also found following a shift from high light to darkness and from high light to low light in the presence of gabaculine, a chlorophyll synthesis inhibitor. However, the LHC II apoproteins did not accumulate in the latter experiments, suggesting that LHC II apoprotein synthesis is coupled to chlorophyll synthesis at or beyond translation. We propose that changes in energy balance brought about by a change in light intensity may control a regulatory factor acting to repress cab mRNA expression in high light. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Light Intensity-Induced Changes in cab mRNA and Light Harvesting Complex II Apoprotein Levels in the Unicellular Chlorophyte Dunaliella tertiolecta

Loading next page...
 
/lp/american-society-of-plant-biologist/light-intensity-induced-changes-in-cab-mrna-and-light-harvesting-0tcwffxqgY
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1991 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.97.1.147
Publisher site
See Article on Publisher Site

Abstract

During a transition from high growth irradiance (700 micromoles quanta per square meter per second) to low growth irradiance (70 micromoles quanta per square meter per second), the unicellular marine chlorophyte Dunaliella tertiolecta Butcher increases the cellular pool size of the light-harvesting complex of photosystem II (LHC II). We showed that the increase in LHC II apoproteins and in chlorophyll content per cell is preceded by an approximately fourfold increase in cab mRNA. The increase in cab mRNA is detectable within 1.5 hours following a shift from high to low light intensity. An increase in the relative abundance of cab mRNA was also found following a shift from high light to darkness and from high light to low light in the presence of gabaculine, a chlorophyll synthesis inhibitor. However, the LHC II apoproteins did not accumulate in the latter experiments, suggesting that LHC II apoprotein synthesis is coupled to chlorophyll synthesis at or beyond translation. We propose that changes in energy balance brought about by a change in light intensity may control a regulatory factor acting to repress cab mRNA expression in high light.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off