Genetics and Biochemistry of Anthocyanin Biosynthesis.

Genetics and Biochemistry of Anthocyanin Biosynthesis. INTRODUCTION Flavonoids represent a large class of secondary plant metabolites, of which anthocyaninsare the most conspicuous class, dueto the wide range of colors resulting from their synthesis. Anthocyanins are important to many diverse functions within plants. Synthesis of anthocyanins in petals is undoubtedly intended to attract pollitors, whereas anthocyanin synthesis in seeds and fruits may aid in seed dispersal. Anthocyanins and other flavonoids can also be important as feeding deterrents and as protection against damage from UV irradiation. The existence of such a diverse range of functions and types of anthocyanins raises questionsabout how these compounds are synthesized and how their synthesis is regulated. The study of the genetics of anthocyanin synthesis began last century with Mendel’s work on flower color in peas. Since that time, there have been periods of intensive study into the genetics and biochemistry of pigment production in a number of different species. In the early studies, genetic loci were correlated with easily observable color changes. After the structures of anthocyanins and other flavonoids were determined, it was possible to correlate single genes with particular structural alterations of anthocyanins or with the presence or absence of particular flavonoids. Mutations in anthocyanin genes have been http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Genetics and Biochemistry of Anthocyanin Biosynthesis.

Loading next page...
 
/lp/american-society-of-plant-biologist/genetics-and-biochemistry-of-anthocyanin-biosynthesis-hu4l2OgwWL
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1995 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
Publisher site
See Article on Publisher Site

Abstract

INTRODUCTION Flavonoids represent a large class of secondary plant metabolites, of which anthocyaninsare the most conspicuous class, dueto the wide range of colors resulting from their synthesis. Anthocyanins are important to many diverse functions within plants. Synthesis of anthocyanins in petals is undoubtedly intended to attract pollitors, whereas anthocyanin synthesis in seeds and fruits may aid in seed dispersal. Anthocyanins and other flavonoids can also be important as feeding deterrents and as protection against damage from UV irradiation. The existence of such a diverse range of functions and types of anthocyanins raises questionsabout how these compounds are synthesized and how their synthesis is regulated. The study of the genetics of anthocyanin synthesis began last century with Mendel’s work on flower color in peas. Since that time, there have been periods of intensive study into the genetics and biochemistry of pigment production in a number of different species. In the early studies, genetic loci were correlated with easily observable color changes. After the structures of anthocyanins and other flavonoids were determined, it was possible to correlate single genes with particular structural alterations of anthocyanins or with the presence or absence of particular flavonoids. Mutations in anthocyanin genes have been

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off