Geminivirus replication origins have a modular organization.

Geminivirus replication origins have a modular organization. Tomato golden mosaic virus (TGMV) and bean golden mosaic virus (BGMV) are closely related geminiviruses with bipartite genomes. The A and B DNA components of each virus have cis-acting sequences necessary for replication, and their A components encode trans-acting factors are required for this process. We showed that virus-specific interactions between the cis- and trans-acting functions are required for TGMV and BGMV replication in tobacco protoplasts. We also demonstrated that, similar to the essential TGMV AL1 replication protein, BGMV AL1 binds specifically to its origin in vitro and that neither TGMV nor BGMV AL1 proteins bind to the heterologous origin. The in vitro AL1 binding specificities of the B components were exchanged by site-directed mutagenesis, but the resulting mutants were not replicated by either A component. These results showed that the high-affinity AL1 binding site is necessary but not sufficient for virus-specific origin activity in vivo. Geminivirus genomes also contain a stem-loop sequence that is required for origin function. A BGMV B mutant with the TGMV stem-loop sequence was replicated by BGMV A, indicating that BGMV AL1 does not discriminate between the two sequences. A BGMV B double mutant, with the TGMV AL1 binding site and stem-loop sequences, was not replicated by either A component, indicating that an additional element in the TGMV origin is required for productive interaction with TGMV AL1. These results suggested that geminivirus replication origins are composed of at least three functional modules: (1) a putative stem-loop structure that is required for replication but does not contribute to virus-specific recognition of the origin, (2) a specific high-affinity binding site for the AL1 protein, and (3) at least one additional element that contributes to specific origin recognition by viral trans-acting factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Geminivirus replication origins have a modular organization.

Loading next page...
 
/lp/american-society-of-plant-biologist/geminivirus-replication-origins-have-a-modular-organization-eA7ktR7JQ7
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1994 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.6.3.405
Publisher site
See Article on Publisher Site

Abstract

Tomato golden mosaic virus (TGMV) and bean golden mosaic virus (BGMV) are closely related geminiviruses with bipartite genomes. The A and B DNA components of each virus have cis-acting sequences necessary for replication, and their A components encode trans-acting factors are required for this process. We showed that virus-specific interactions between the cis- and trans-acting functions are required for TGMV and BGMV replication in tobacco protoplasts. We also demonstrated that, similar to the essential TGMV AL1 replication protein, BGMV AL1 binds specifically to its origin in vitro and that neither TGMV nor BGMV AL1 proteins bind to the heterologous origin. The in vitro AL1 binding specificities of the B components were exchanged by site-directed mutagenesis, but the resulting mutants were not replicated by either A component. These results showed that the high-affinity AL1 binding site is necessary but not sufficient for virus-specific origin activity in vivo. Geminivirus genomes also contain a stem-loop sequence that is required for origin function. A BGMV B mutant with the TGMV stem-loop sequence was replicated by BGMV A, indicating that BGMV AL1 does not discriminate between the two sequences. A BGMV B double mutant, with the TGMV AL1 binding site and stem-loop sequences, was not replicated by either A component, indicating that an additional element in the TGMV origin is required for productive interaction with TGMV AL1. These results suggested that geminivirus replication origins are composed of at least three functional modules: (1) a putative stem-loop structure that is required for replication but does not contribute to virus-specific recognition of the origin, (2) a specific high-affinity binding site for the AL1 protein, and (3) at least one additional element that contributes to specific origin recognition by viral trans-acting factors.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off