Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem

Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem There is considerable evidence in the literature that beneficial rhizospheric microbes can alter plant morphology, enhance plant growth, and increase mineral content. Of late, there is a surge to understand the impact of the microbiome on plant health. Recent research shows the utilization of novel sequencing techniques to identify the microbiome in model systems such as Arabidopsis ( Arabidopsis thaliana ) and maize ( Zea mays ). However, it is not known how the community of microbes identified may play a role to improve plant health and fitness. There are very few detailed studies with isolated beneficial microbes showing the importance of the functional microbiome in plant fitness and disease protection. Some recent work on the cultivated microbiome in rice ( Oryza sativa ) shows that a wide diversity of bacterial species is associated with the roots of field-grown rice plants. However, the biological significance and potential effects of the microbiome on the host plants are completely unknown. Work performed with isolated strains showed various genetic pathways that are involved in the recognition of host-specific factors that play roles in beneficial host-microbe interactions. The composition of the microbiome in plants is dynamic and controlled by multiple factors. In the case of the rhizosphere, temperature, pH, and the presence of chemical signals from bacteria, plants, and nematodes all shape the environment and influence which organisms will flourish. This provides a basis for plants and their microbiomes to selectively associate with one another. This Update addresses the importance of the functional microbiome to identify phenotypes that may provide a sustainable and effective strategy to increase crop yield and food security. Glossary rRNA ribosomal RNA DGGE denaturing gradient gel electrophoresis SIP stable isotope probing HTS high-throughput sequencing OTUs operational taxonomic units JA jasmonic acid http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem

Loading next page...
 
/lp/american-society-of-plant-biologist/functional-soil-microbiome-belowground-solutions-to-an-aboveground-VnnH5o0kqJ
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.114.245811
Publisher site
See Article on Publisher Site

Abstract

There is considerable evidence in the literature that beneficial rhizospheric microbes can alter plant morphology, enhance plant growth, and increase mineral content. Of late, there is a surge to understand the impact of the microbiome on plant health. Recent research shows the utilization of novel sequencing techniques to identify the microbiome in model systems such as Arabidopsis ( Arabidopsis thaliana ) and maize ( Zea mays ). However, it is not known how the community of microbes identified may play a role to improve plant health and fitness. There are very few detailed studies with isolated beneficial microbes showing the importance of the functional microbiome in plant fitness and disease protection. Some recent work on the cultivated microbiome in rice ( Oryza sativa ) shows that a wide diversity of bacterial species is associated with the roots of field-grown rice plants. However, the biological significance and potential effects of the microbiome on the host plants are completely unknown. Work performed with isolated strains showed various genetic pathways that are involved in the recognition of host-specific factors that play roles in beneficial host-microbe interactions. The composition of the microbiome in plants is dynamic and controlled by multiple factors. In the case of the rhizosphere, temperature, pH, and the presence of chemical signals from bacteria, plants, and nematodes all shape the environment and influence which organisms will flourish. This provides a basis for plants and their microbiomes to selectively associate with one another. This Update addresses the importance of the functional microbiome to identify phenotypes that may provide a sustainable and effective strategy to increase crop yield and food security. Glossary rRNA ribosomal RNA DGGE denaturing gradient gel electrophoresis SIP stable isotope probing HTS high-throughput sequencing OTUs operational taxonomic units JA jasmonic acid

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off