Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Functional architecture of the light-responsive chalcone synthase promoter from parsley.

Functional architecture of the light-responsive chalcone synthase promoter from parsley. We have combined in vivo genomic footprinting and light-induced transient expression of chalcone synthase promoter derivatives in parsley protoplasts to identify cis sequences regulating light activation. The parsley chalcone synthase promoter contains two cis "units" that are light-responsive. Each unit is composed of short DNA stretches of approximately 50 base pairs, and each contains two in vivo footprints. One of the footprints in each unit covers a sequence that is highly conserved among other light- and stress-regulated plant genes. The other footprinted sequences in each unit are not related to each other. The TATA distal light-responsive unit is inherently weak but can compensate partially for the loss of the stronger TATA proximal unit. Levels of light-induced expression from either can be influenced by the presence of a region of approximately 100 base pairs located upstream of the TATA distal light-responsive unit. Combination of the light-responsive units and upstream region generates a synergistic response to light. We speculate that functional compensation generated by nonidentical, but sequence-related, cis units foreshadows combinatorial diversity of cognate trans factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Functional architecture of the light-responsive chalcone synthase promoter from parsley.

Loading next page...
1
 
/lp/american-society-of-plant-biologist/functional-architecture-of-the-light-responsive-chalcone-synthase-xOIdREJvhO
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1989 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.1.7.707
pmid
2535519
Publisher site
See Article on Publisher Site

Abstract

We have combined in vivo genomic footprinting and light-induced transient expression of chalcone synthase promoter derivatives in parsley protoplasts to identify cis sequences regulating light activation. The parsley chalcone synthase promoter contains two cis "units" that are light-responsive. Each unit is composed of short DNA stretches of approximately 50 base pairs, and each contains two in vivo footprints. One of the footprints in each unit covers a sequence that is highly conserved among other light- and stress-regulated plant genes. The other footprinted sequences in each unit are not related to each other. The TATA distal light-responsive unit is inherently weak but can compensate partially for the loss of the stronger TATA proximal unit. Levels of light-induced expression from either can be influenced by the presence of a region of approximately 100 base pairs located upstream of the TATA distal light-responsive unit. Combination of the light-responsive units and upstream region generates a synergistic response to light. We speculate that functional compensation generated by nonidentical, but sequence-related, cis units foreshadows combinatorial diversity of cognate trans factors.

There are no references for this article.