Ethylene Biosynthesis and Signaling Networks

Ethylene Biosynthesis and Signaling Networks Despite its simple two-carbon structure, the olefin ethylene is a potent modulator of plant growth and development (Ecker, 1995 ). The plant hormone ethylene is involved in many aspects of the plant life cycle, including seed germination, root hair development, root nodulation, flower senescence, abscission, and fruit ripening (reviewed in Johnson and Ecker, 1998 ). The production of ethylene is tightly regulated by internal signals during development and in response to environmental stimuli from biotic (e.g., pathogen attack) and abiotic stresses, such as wounding, hypoxia, ozone, chilling, or freezing. To understand the roles of ethylene in plant functions, it is important to know how this gaseous hormone is synthesized, how its production is regulated, and how the signal is transduced. Morphological changes in dark-grown (etiolated) seedlings treated with ethylene or its metabolic precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), have been termed the triple response. The exaggerated curvature of the apical hook, radial swelling of the hypocotyl, and shortening of the hypocotyl and root are the unmistakable hallmarks of this ethylene response. Over the past decade, the triple response phenotype has been used to screen for mutants that are defective in ethylene responses (Bleecker et al., 1988 ; Guzman and Ecker, http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Ethylene Biosynthesis and Signaling Networks

Loading next page...
 
/lp/american-society-of-plant-biologist/ethylene-biosynthesis-and-signaling-networks-A0AnFyjf2R
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.001768
Publisher site
See Article on Publisher Site

Abstract

Despite its simple two-carbon structure, the olefin ethylene is a potent modulator of plant growth and development (Ecker, 1995 ). The plant hormone ethylene is involved in many aspects of the plant life cycle, including seed germination, root hair development, root nodulation, flower senescence, abscission, and fruit ripening (reviewed in Johnson and Ecker, 1998 ). The production of ethylene is tightly regulated by internal signals during development and in response to environmental stimuli from biotic (e.g., pathogen attack) and abiotic stresses, such as wounding, hypoxia, ozone, chilling, or freezing. To understand the roles of ethylene in plant functions, it is important to know how this gaseous hormone is synthesized, how its production is regulated, and how the signal is transduced. Morphological changes in dark-grown (etiolated) seedlings treated with ethylene or its metabolic precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), have been termed the triple response. The exaggerated curvature of the apical hook, radial swelling of the hypocotyl, and shortening of the hypocotyl and root are the unmistakable hallmarks of this ethylene response. Over the past decade, the triple response phenotype has been used to screen for mutants that are defective in ethylene responses (Bleecker et al., 1988 ; Guzman and Ecker,

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off