Differential Expression and Localization of Early Light-Induced Proteins in Arabidopsis

Differential Expression and Localization of Early Light-Induced Proteins in Arabidopsis The early light-induced proteins (Elips) in higher plants are nuclear-encoded, light stress-induced proteins located in thylakoid membranes and related to light-harvesting chlorophyll (LHC) a / b -binding proteins. A photoprotective function was proposed for Elips. Here we showed that after 2 h exposure of Arabidopsis ( Arabidopsis thaliana ) leaves to light stress Elip1 and Elip2 coisolate equally with monomeric (mLhcb) and trimeric (tLhcb) populations of the major LHC from photosystem II (PSII) as based on the Elip:Lhcb protein ratio. A longer exposure to light stress resulted in increased amounts of Elips in tLhcb as compared to mLhcb, due to a reduction of tLhcb amounts. We demonstrated further that the expression of Elip1 and Elip2 transcripts was differentially regulated in green leaves exposed to light stress. The accumulation of Elip1 transcripts and proteins increased almost linearly with increasing light intensities and correlated with the degree of photoinactivation and photodamage of PSII reaction centers. A stepwise accumulation of Elip2 was induced when 40% of PSII reaction centers became photodamaged. The differential expression of Elip1 and Elip2 occurred also in light stress-preadapted or senescent leaves exposed to light stress but there was a lack of correlation between transcript and protein accumulation. Also in this system the accumulation of Elip1 but not Elip2 correlated with the degree of PSII photodamage. Based on pigment analysis, measurements of PSII activity, and assays of the oxidation status of proteins we propose that the discrepancy between amounts of Elip transcripts and proteins in light stress-preadapted or senescent leaves is related to a presence of photoprotective anthocyanins or to lower chlorophyll availability, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Differential Expression and Localization of Early Light-Induced Proteins in Arabidopsis

Loading next page...
 
/lp/american-society-of-plant-biologist/differential-expression-and-localization-of-early-light-induced-IVbc1UZMw0
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.106.081489
Publisher site
See Article on Publisher Site

Abstract

The early light-induced proteins (Elips) in higher plants are nuclear-encoded, light stress-induced proteins located in thylakoid membranes and related to light-harvesting chlorophyll (LHC) a / b -binding proteins. A photoprotective function was proposed for Elips. Here we showed that after 2 h exposure of Arabidopsis ( Arabidopsis thaliana ) leaves to light stress Elip1 and Elip2 coisolate equally with monomeric (mLhcb) and trimeric (tLhcb) populations of the major LHC from photosystem II (PSII) as based on the Elip:Lhcb protein ratio. A longer exposure to light stress resulted in increased amounts of Elips in tLhcb as compared to mLhcb, due to a reduction of tLhcb amounts. We demonstrated further that the expression of Elip1 and Elip2 transcripts was differentially regulated in green leaves exposed to light stress. The accumulation of Elip1 transcripts and proteins increased almost linearly with increasing light intensities and correlated with the degree of photoinactivation and photodamage of PSII reaction centers. A stepwise accumulation of Elip2 was induced when 40% of PSII reaction centers became photodamaged. The differential expression of Elip1 and Elip2 occurred also in light stress-preadapted or senescent leaves exposed to light stress but there was a lack of correlation between transcript and protein accumulation. Also in this system the accumulation of Elip1 but not Elip2 correlated with the degree of PSII photodamage. Based on pigment analysis, measurements of PSII activity, and assays of the oxidation status of proteins we propose that the discrepancy between amounts of Elip transcripts and proteins in light stress-preadapted or senescent leaves is related to a presence of photoprotective anthocyanins or to lower chlorophyll availability, respectively.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off