Dependence of Photosynthetic Rates on Leaf Density Thickness in Deciduous Woody Plants Grown in Sun and Shade

Dependence of Photosynthetic Rates on Leaf Density Thickness in Deciduous Woody Plants Grown in... Comparisons of photosynthetic rates were made on leaves of ten species of woody dicotyledons grown in the field under full sun or under a canopy which transmitted approximately 18% of full light. Photosynthesis and dark respiration were measured and compared on various bases: area, chlorophyll, fresh weight of lamina, density thickness (fresh weight per unit area), and protein. Light-saturated photosynthesis per unit area or unit chlorophyll was about 1.5 times greater in the sun leaves than in the shade leaves and essentially equal per unit fresh weight or unit protein. Sun leaves were thicker but the enzymes per unit fresh weight remained constant as thickness varied. Chlorophyll per unit area remained about constant; chlorophyll per unit fresh weight varied inversely with changes in leaf thickness. Thus, density thickness variation is important in photosynthetic adaptation to sun and shade. This is also shown by the relationship between light-saturated photosynthesis per unit area and density thickness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Dependence of Photosynthetic Rates on Leaf Density Thickness in Deciduous Woody Plants Grown in Sun and Shade

Loading next page...
 
/lp/american-society-of-plant-biologist/dependence-of-photosynthetic-rates-on-leaf-density-thickness-in-yWyy09o510
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1983 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.72.3.674
Publisher site
See Article on Publisher Site

Abstract

Comparisons of photosynthetic rates were made on leaves of ten species of woody dicotyledons grown in the field under full sun or under a canopy which transmitted approximately 18% of full light. Photosynthesis and dark respiration were measured and compared on various bases: area, chlorophyll, fresh weight of lamina, density thickness (fresh weight per unit area), and protein. Light-saturated photosynthesis per unit area or unit chlorophyll was about 1.5 times greater in the sun leaves than in the shade leaves and essentially equal per unit fresh weight or unit protein. Sun leaves were thicker but the enzymes per unit fresh weight remained constant as thickness varied. Chlorophyll per unit area remained about constant; chlorophyll per unit fresh weight varied inversely with changes in leaf thickness. Thus, density thickness variation is important in photosynthetic adaptation to sun and shade. This is also shown by the relationship between light-saturated photosynthesis per unit area and density thickness.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off