Comparative Evolution of Photosynthetic Genes in Response to Polyploid and Nonpolyploid Duplication

Comparative Evolution of Photosynthetic Genes in Response to Polyploid and Nonpolyploid Duplication The likelihood of duplicate gene retention following polyploidy varies by functional properties (e.g. gene ontologies or protein family domains), but little is known about the effects of whole-genome duplication on gene networks related by a common physiological process. Here, we examined the effects of both polyploid and nonpolyploid duplications on genes encoding the major functional groups of photosynthesis (photosystem I, photosystem II, the light-harvesting complex, and the Calvin cycle) in the cultivated soybean ( Glycine max ), which has experienced two rounds of whole-genome duplication. Photosystem gene families exhibit retention patterns consistent with dosage sensitivity (preferential retention of polyploid duplicates and elimination of nonpolyploid duplicates), whereas Calvin cycle and light-harvesting complex gene families do not. We observed similar patterns in barrel medic ( Medicago truncatula ), which shared the older genome duplication with soybean but has evolved independently for approximately 50 million years, and in Arabidopsis ( Arabidopsis thaliana ), which experienced two nested polyploidy events independent from the legume duplications. In both soybean and Arabidopsis, Calvin cycle gene duplicates exhibit a greater capacity for functional differentiation than do duplicates within the photosystems, which likely explains the greater retention of ancient, nonpolyploid duplicates and larger average gene family size for the Calvin cycle relative to the photosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Comparative Evolution of Photosynthetic Genes in Response to Polyploid and Nonpolyploid Duplication

Loading next page...
 
/lp/american-society-of-plant-biologist/comparative-evolution-of-photosynthetic-genes-in-response-to-polyploid-kijrNdS31V
Publisher site
See Article on Publisher Site

Abstract

The likelihood of duplicate gene retention following polyploidy varies by functional properties (e.g. gene ontologies or protein family domains), but little is known about the effects of whole-genome duplication on gene networks related by a common physiological process. Here, we examined the effects of both polyploid and nonpolyploid duplications on genes encoding the major functional groups of photosynthesis (photosystem I, photosystem II, the light-harvesting complex, and the Calvin cycle) in the cultivated soybean ( Glycine max ), which has experienced two rounds of whole-genome duplication. Photosystem gene families exhibit retention patterns consistent with dosage sensitivity (preferential retention of polyploid duplicates and elimination of nonpolyploid duplicates), whereas Calvin cycle and light-harvesting complex gene families do not. We observed similar patterns in barrel medic ( Medicago truncatula ), which shared the older genome duplication with soybean but has evolved independently for approximately 50 million years, and in Arabidopsis ( Arabidopsis thaliana ), which experienced two nested polyploidy events independent from the legume duplications. In both soybean and Arabidopsis, Calvin cycle gene duplicates exhibit a greater capacity for functional differentiation than do duplicates within the photosystems, which likely explains the greater retention of ancient, nonpolyploid duplicates and larger average gene family size for the Calvin cycle relative to the photosystems.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off