Apoptosis: A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective Phytotoxin and Invoked during Development.

Apoptosis: A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective... The host-selective AAL toxins secreted by Alternaria alternata f sp lycopersici are primary chemical determinants in the Alternaria stem canker disease of tomato. The AAL toxins are members of a new class of sphinganine analog mycotoxins that cause cell death in both animals and plants. Here, we report detection of stereotypic hallmarks of apoptosis during cell death induced by these toxins in tomato. DNA ladders were observed during cell death in toxin-treated tomato protoplasts and leaflets. The intensity of the DNA ladders was enhanced by Ca2+ and inhibited by Zn2+. The progressive delineation of fragmented DNA into distinct bodies, coincident with the appearance of DNA ladders, also was observed during death of toxin-treated tomato protoplasts. In situ analysis of cells dying during development in both onion root caps and tomato leaf tracheary elements revealed DNA fragmentation localized to the dying cells as well as the additional formation of apoptotic-like bodies in sloughing root cap cells. We conclude that the fundamental elements of apoptosis, as characterized in animals, are conserved in plants. The apoptotic process may be expressed during some developmental transitions and is the functional process by which symptomatic lesions are formed in the Alternaria stem canker disease of tomato. Sphinganine analog mycotoxins may be used to characterize further signaling pathways leading to apoptosis in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Apoptosis: A Functional Paradigm for Programmed Plant Cell Death Induced by a Host-Selective Phytotoxin and Invoked during Development.

Loading next page...
 
/lp/american-society-of-plant-biologist/apoptosis-a-functional-paradigm-for-programmed-plant-cell-death-iNSZsVvzsf
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1996 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.8.3.375
Publisher site
See Article on Publisher Site

Abstract

The host-selective AAL toxins secreted by Alternaria alternata f sp lycopersici are primary chemical determinants in the Alternaria stem canker disease of tomato. The AAL toxins are members of a new class of sphinganine analog mycotoxins that cause cell death in both animals and plants. Here, we report detection of stereotypic hallmarks of apoptosis during cell death induced by these toxins in tomato. DNA ladders were observed during cell death in toxin-treated tomato protoplasts and leaflets. The intensity of the DNA ladders was enhanced by Ca2+ and inhibited by Zn2+. The progressive delineation of fragmented DNA into distinct bodies, coincident with the appearance of DNA ladders, also was observed during death of toxin-treated tomato protoplasts. In situ analysis of cells dying during development in both onion root caps and tomato leaf tracheary elements revealed DNA fragmentation localized to the dying cells as well as the additional formation of apoptotic-like bodies in sloughing root cap cells. We conclude that the fundamental elements of apoptosis, as characterized in animals, are conserved in plants. The apoptotic process may be expressed during some developmental transitions and is the functional process by which symptomatic lesions are formed in the Alternaria stem canker disease of tomato. Sphinganine analog mycotoxins may be used to characterize further signaling pathways leading to apoptosis in plants.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off