Acquisition of Thermotolerance in Soybean Seedlings Synthesis and Accumulation of Heat Shock Proteins and their Cellular Localization

Acquisition of Thermotolerance in Soybean Seedlings Synthesis and Accumulation of Heat Shock... Chu-Yung Lin 2 , J. K. Roberts and Joe L. Key Botany Department, The University of Georgia, Athens, Georgia 30602 Abstract When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28°C up to 40°C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as heat shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. A brief 10-minute exposure to 45°C followed by incubation at 28°C also results in the synthesis of HSPs. Prolonged incubation (e.g. 1-2 hours) at 45°C results in greatly impaired protein synthesis and seedling death. However, a pretreatment at 40°C or a brief (10-minute) pulse treatment at 45°C followed by a 28°C incubation provide protection (thermal tolerance) to a subsequent exposure at 45°C. Maximum thermoprotection is achieved by a 2-hour 40°C pretreatment or after 2 hours at 28°C with a prior 10-minute 45°C exposure. Arsenite treatment (50 micromolar for 3 hours) also induces the synthesis of HSP-like proteins, and also provides thermoprotection to a 45°C HS; thus, there is a strong positive correlation between the accumulation of HSPs and the acquisition of thermal tolerance under a range of conditions. During 40°C HS, some HSPs become localized and stably associated with purified organelle fractions ( e.g. nuclei, mitochondria, and ribosomes) while others do not. A chase at 28°C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40°C chase period. If the seedlings are subjected to a second HS after a 28°C chase, the HSPs rapidly (complete within 15 minute) relocalize in the organelle fractions. The relative amount of the HSPs which relocalize during a second HS increases with higher temperatures from 40°C to 45°C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28°C but become organelle-associated during a subsequent HS at 40°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

Acquisition of Thermotolerance in Soybean Seedlings Synthesis and Accumulation of Heat Shock Proteins and their Cellular Localization

Loading next page...
 
/lp/american-society-of-plant-biologist/acquisition-of-thermotolerance-in-soybean-seedlings-synthesis-and-ne3yHUhhbv
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1984 by the American Society of Plant Biologists
ISSN
1532-2548
eISSN
0032-0889
D.O.I.
10.1104/pp.74.1.152
Publisher site
See Article on Publisher Site

Abstract

Chu-Yung Lin 2 , J. K. Roberts and Joe L. Key Botany Department, The University of Georgia, Athens, Georgia 30602 Abstract When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28°C up to 40°C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as heat shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. A brief 10-minute exposure to 45°C followed by incubation at 28°C also results in the synthesis of HSPs. Prolonged incubation (e.g. 1-2 hours) at 45°C results in greatly impaired protein synthesis and seedling death. However, a pretreatment at 40°C or a brief (10-minute) pulse treatment at 45°C followed by a 28°C incubation provide protection (thermal tolerance) to a subsequent exposure at 45°C. Maximum thermoprotection is achieved by a 2-hour 40°C pretreatment or after 2 hours at 28°C with a prior 10-minute 45°C exposure. Arsenite treatment (50 micromolar for 3 hours) also induces the synthesis of HSP-like proteins, and also provides thermoprotection to a 45°C HS; thus, there is a strong positive correlation between the accumulation of HSPs and the acquisition of thermal tolerance under a range of conditions. During 40°C HS, some HSPs become localized and stably associated with purified organelle fractions ( e.g. nuclei, mitochondria, and ribosomes) while others do not. A chase at 28°C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40°C chase period. If the seedlings are subjected to a second HS after a 28°C chase, the HSPs rapidly (complete within 15 minute) relocalize in the organelle fractions. The relative amount of the HSPs which relocalize during a second HS increases with higher temperatures from 40°C to 45°C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28°C but become organelle-associated during a subsequent HS at 40°C.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off