A DNA sequence required for geminivirus replication also mediates transcriptional regulation.

A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Tomato golden mosaic virus (TGMV), a member of the geminivirus family, requires a single virus-encoded protein for DNA replication. We show that the TGMV replication protein, AL1, also acts during transcription to specifically repress the activity of its promoter. An earlier study established that AL1 binds to a 13-bp sequence (5'-GGTAGTAAGGTAG) that is essential for activity of the TGMV replication origin. Analysis of AL1 binding site mutants in transient expression assays demonstrated that the same site, which is located between the transcription start site and TATA box in the AL1 promoter, also mediates transcriptional repression. These experiments revealed that the repeated motifs in the AL1 binding site contribute differentially to repression, as has been observed previously for AL1-DNA binding and viral replication. Introduction of the AL1 binding site into the 35S promoter of the cauliflower mosaic virus was sufficient to confer AL1-mediated repression to the heterologous promoter. Analysis of a truncated AL1 promoter and of mutant AL1 proteins showed that repression does not require a replication-competent template or a replication-competent AL1 protein. Transient expression studies using two different Nicotiana cell lines revealed that, although the two lines replicate plasmids containing the TGMV origin similarly, they support very different levels of AL1-mediated repression. These results suggest that geminivirus transcriptional repression and replication may be independent processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A DNA sequence required for geminivirus replication also mediates transcriptional regulation.

Loading next page...
 
/lp/american-society-of-plant-biologist/a-dna-sequence-required-for-geminivirus-replication-also-mediates-7XI0jgvjV2
Publisher
American Society of Plant Biologist
Copyright
Copyright © 1994 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.6.8.1157
Publisher site
See Article on Publisher Site

Abstract

Tomato golden mosaic virus (TGMV), a member of the geminivirus family, requires a single virus-encoded protein for DNA replication. We show that the TGMV replication protein, AL1, also acts during transcription to specifically repress the activity of its promoter. An earlier study established that AL1 binds to a 13-bp sequence (5'-GGTAGTAAGGTAG) that is essential for activity of the TGMV replication origin. Analysis of AL1 binding site mutants in transient expression assays demonstrated that the same site, which is located between the transcription start site and TATA box in the AL1 promoter, also mediates transcriptional repression. These experiments revealed that the repeated motifs in the AL1 binding site contribute differentially to repression, as has been observed previously for AL1-DNA binding and viral replication. Introduction of the AL1 binding site into the 35S promoter of the cauliflower mosaic virus was sufficient to confer AL1-mediated repression to the heterologous promoter. Analysis of a truncated AL1 promoter and of mutant AL1 proteins showed that repression does not require a replication-competent template or a replication-competent AL1 protein. Transient expression studies using two different Nicotiana cell lines revealed that, although the two lines replicate plasmids containing the TGMV origin similarly, they support very different levels of AL1-mediated repression. These results suggest that geminivirus transcriptional repression and replication may be independent processes.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off