A Cysteine-Rich Extracellular Protein, LAT52, Interacts with the Extracellular Domain of the Pollen Receptor Kinase LePRK2

A Cysteine-Rich Extracellular Protein, LAT52, Interacts with the Extracellular Domain of the... Pollen germination and pollen tube growth are thought to require extracellular cues, but how these cues are perceived and transduced remains largely unknown. Pollen receptor kinases are plausible candidates for this role; they might bind extracellular ligands and thereby mediate cytoplasmic events required for pollen germination and pollen tube growth. To search for pollen-expressed ligands for pollen receptor kinases, we used the extracellular domains of three pollen-specific receptor kinases of tomato (LePRK1, LePRK2, and LePRK3) as baits in a yeast two-hybrid screen. We identified numerous secreted or plasma membrane–bound candidate ligands. One of these, the Cys-rich protein LAT52, was known to be essential during pollen hydration and pollen tube growth. We used in vivo coimmunoprecipitation to demonstrate that LAT52 was capable of forming a complex with LePRK2 in pollen and to show that the extracellular domain of LePRK2 was sufficient for the interaction. Soluble LAT52 can exist in differently sized forms, but only the larger form can interact with LePRK2. We propose that LAT52 might be a ligand for LePRK2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Cysteine-Rich Extracellular Protein, LAT52, Interacts with the Extracellular Domain of the Pollen Receptor Kinase LePRK2

Loading next page...
 
/lp/american-society-of-plant-biologist/a-cysteine-rich-extracellular-protein-lat52-interacts-with-the-CdAR0QAfVS
Publisher
American Society of Plant Biologist
Copyright
Copyright © 2015 by the American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
D.O.I.
10.1105/tpc.003103
Publisher site
See Article on Publisher Site

Abstract

Pollen germination and pollen tube growth are thought to require extracellular cues, but how these cues are perceived and transduced remains largely unknown. Pollen receptor kinases are plausible candidates for this role; they might bind extracellular ligands and thereby mediate cytoplasmic events required for pollen germination and pollen tube growth. To search for pollen-expressed ligands for pollen receptor kinases, we used the extracellular domains of three pollen-specific receptor kinases of tomato (LePRK1, LePRK2, and LePRK3) as baits in a yeast two-hybrid screen. We identified numerous secreted or plasma membrane–bound candidate ligands. One of these, the Cys-rich protein LAT52, was known to be essential during pollen hydration and pollen tube growth. We used in vivo coimmunoprecipitation to demonstrate that LAT52 was capable of forming a complex with LePRK2 in pollen and to show that the extracellular domain of LePRK2 was sufficient for the interaction. Soluble LAT52 can exist in differently sized forms, but only the larger form can interact with LePRK2. We propose that LAT52 might be a ligand for LePRK2.

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off