“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Chemoprevention of Breast Cancer, Proteomic Discovery of Genistein Action in the Rat Mammary Gland

Genistein, the primary isoflavone component of soy, consumed in the diet during the prepubertal period only, and the combined prepubertal and adult periods, suppresses chemically induced mammary cancer in rats. Gestational or adult-only exposures do not provide protection. An inverse relation exists between cancer susceptibility and mammary gland differentiation. The current study used proteomic technology to investigate genistein mechanisms of action as related to programming against chemically induced mammary cancer. Rats were injected subcutaneously with 500 µg genistein/g body weight on d 16, 18, and 20 postpartum. At d 21, mammary glands were subjected to 2-dimensional polyacrylamide gel electrophoresis. After gel scanning, image analysis, and MS, 6 proteins were determined to be differentially regulated and identified. One protein, GTP-cyclohydrolase 1 (GTP-CH1), was confirmed as being significantly upregulated at d 21 by immunoblot analysis. Investigation of downstream signaling from GTP-CH1 showed that tyrosine hydroxylase was upregulated and vascular endothelial growth factor receptor 2 (VEGFR2) was downregulated in the mammary glands of 50-d-old rats treated with genistein in the prepubertal period. This and previous work suggest that early prepubertal exposure to genistein enhances cell proliferation by upregulating GTP-CH1 and the epidermal growth factor (EGF)-signaling pathway, and hence cell differentiation and gland maturation. This unique developmental maturation leads to a new biochemical blueprint, whereby the cells have reduced EGF signaling and VEGFR2, which renders the mature mammary gland less proliferative and less susceptible to cancer. This study demonstrated the usefulness of proteomics for the discovery of novel pathways that may be involved in cancer prevention. KEY WORDS: • 2-D gel • genistein • GTP-CH1 • VEGFR2 • proteomics http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Nutrition American Society for Nutrition

Chemoprevention of Breast Cancer, Proteomic Discovery of Genistein Action in the Rat Mammary Gland

Abstract

Genistein, the primary isoflavone component of soy, consumed in the diet during the prepubertal period only, and the combined prepubertal and adult periods, suppresses chemically induced mammary cancer in rats. Gestational or adult-only exposures do not provide protection. An inverse relation exists between cancer susceptibility and mammary gland differentiation. The current study used proteomic technology to investigate genistein mechanisms of action as related to programming against chemically induced mammary cancer. Rats were injected subcutaneously with 500 µg genistein/g body weight on d 16, 18, and 20 postpartum. At d 21, mammary glands were subjected to 2-dimensional polyacrylamide gel electrophoresis. After gel scanning, image analysis, and MS, 6 proteins were determined to be differentially regulated and identified. One protein, GTP-cyclohydrolase 1 (GTP-CH1), was confirmed as being significantly upregulated at d 21 by immunoblot analysis. Investigation of downstream signaling from GTP-CH1 showed that tyrosine hydroxylase was upregulated and vascular endothelial growth factor receptor 2 (VEGFR2) was downregulated in the mammary glands of 50-d-old rats treated with genistein in the prepubertal period. This and previous work suggest that early prepubertal exposure to genistein enhances cell proliferation by upregulating GTP-CH1 and the epidermal growth factor (EGF)-signaling pathway, and hence cell differentiation and gland maturation. This unique developmental maturation leads to a new biochemical blueprint, whereby the cells have reduced EGF signaling and VEGFR2, which renders the mature mammary gland less proliferative and less susceptible to cancer. This study demonstrated the usefulness of proteomics for the discovery of novel pathways that may be involved in cancer prevention. KEY WORDS: • 2-D gel • genistein • GTP-CH1 • VEGFR2 • proteomics
Loading next page...
 
/lp/american-society-for-nutrition/chemoprevention-of-breast-cancer-proteomic-discovery-of-genistein-L1VsU6eJ0w

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$40/month

Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$30/month
billed annually