Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation.

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a... Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. A A Beg , T S Finco , P V Nantermet and A S Baldwin Jr Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599. ABSTRACT Nuclear factor kappa B (NF-kappa B) is a critical regulator of several genes which are involved in immune and inflammation responses. NF-kappa B, consisting of a 50-kDa protein (p50) and a 65-kDa protein (p65), is bound to a cytoplasmic retention protein called I kappa B. Stimulation of cells with a variety of inducers, including cytokines such as tumor necrosis factor and interleukin-1, leads to the activation and the translocation of p50/65 NF-kappa B into the nucleus. However, the in vivo mechanism of the activation process remains unknown. Here, we provide the first evidence that the in vivo mechanism of NF-kappa B activation is through the phosphorylation and subsequent loss of its inhibitor, I kappa B alpha. We also show that both I kappa B alpha loss and NF-kappa B activation are inhibited in the presence of antioxidants, demonstrating that the loss of I kappa B alpha is a prerequisite for NF-kappa B activation. Finally, we demonstrate that I kappa B alpha is rapidly resynthesized after loss, indicating that an autoregulatory mechanism is involved in the regulation of NF-kappa B function. We propose a mechanism for the activation of NF-kappa B through the modification and loss of I kappa B alpha, thereby establishing its role as a mediator of NF-kappa B activation. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​MCB.13.6.3301 Mol. Cell. Biol. June 1993 vol. 13 no. 6 3301-3310 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Beg, A. A. Articles by Baldwin, A. S. Search for related content PubMed PubMed citation Articles by Beg, A. A. Articles by Baldwin, A. S. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Biology American Society For Microbiology

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation.

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation.

Molecular and Cellular Biology , Volume 13 (6): 3301 – Jun 1, 1993

Abstract

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. A A Beg , T S Finco , P V Nantermet and A S Baldwin Jr Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599. ABSTRACT Nuclear factor kappa B (NF-kappa B) is a critical regulator of several genes which are involved in immune and inflammation responses. NF-kappa B, consisting of a 50-kDa protein (p50) and a 65-kDa protein (p65), is bound to a cytoplasmic retention protein called I kappa B. Stimulation of cells with a variety of inducers, including cytokines such as tumor necrosis factor and interleukin-1, leads to the activation and the translocation of p50/65 NF-kappa B into the nucleus. However, the in vivo mechanism of the activation process remains unknown. Here, we provide the first evidence that the in vivo mechanism of NF-kappa B activation is through the phosphorylation and subsequent loss of its inhibitor, I kappa B alpha. We also show that both I kappa B alpha loss and NF-kappa B activation are inhibited in the presence of antioxidants, demonstrating that the loss of I kappa B alpha is a prerequisite for NF-kappa B activation. Finally, we demonstrate that I kappa B alpha is rapidly resynthesized after loss, indicating that an autoregulatory mechanism is involved in the regulation of NF-kappa B function. We propose a mechanism for the activation of NF-kappa B through the modification and loss of I kappa B alpha, thereby establishing its role as a mediator of NF-kappa B activation. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​MCB.13.6.3301 Mol. Cell. Biol. June 1993 vol. 13 no. 6 3301-3310 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Beg, A. A. Articles by Baldwin, A. S. Search for related content PubMed PubMed citation Articles by Beg, A. A. Articles by Baldwin, A. S. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/tumor-necrosis-factor-and-interleukin-1-lead-to-phosphorylation-and-wk66TTw6oK

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1993 by the American society for Microbiology.
ISSN
0270-7306
eISSN
1098-5549
DOI
10.1128/MCB.13.6.3301
Publisher site
See Article on Publisher Site

Abstract

Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a mechanism for NF-kappa B activation. A A Beg , T S Finco , P V Nantermet and A S Baldwin Jr Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599. ABSTRACT Nuclear factor kappa B (NF-kappa B) is a critical regulator of several genes which are involved in immune and inflammation responses. NF-kappa B, consisting of a 50-kDa protein (p50) and a 65-kDa protein (p65), is bound to a cytoplasmic retention protein called I kappa B. Stimulation of cells with a variety of inducers, including cytokines such as tumor necrosis factor and interleukin-1, leads to the activation and the translocation of p50/65 NF-kappa B into the nucleus. However, the in vivo mechanism of the activation process remains unknown. Here, we provide the first evidence that the in vivo mechanism of NF-kappa B activation is through the phosphorylation and subsequent loss of its inhibitor, I kappa B alpha. We also show that both I kappa B alpha loss and NF-kappa B activation are inhibited in the presence of antioxidants, demonstrating that the loss of I kappa B alpha is a prerequisite for NF-kappa B activation. Finally, we demonstrate that I kappa B alpha is rapidly resynthesized after loss, indicating that an autoregulatory mechanism is involved in the regulation of NF-kappa B function. We propose a mechanism for the activation of NF-kappa B through the modification and loss of I kappa B alpha, thereby establishing its role as a mediator of NF-kappa B activation. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​MCB.13.6.3301 Mol. Cell. Biol. June 1993 vol. 13 no. 6 3301-3310 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Beg, A. A. Articles by Baldwin, A. S. Search for related content PubMed PubMed citation Articles by Beg, A. A. Articles by Baldwin, A. S. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview();

Journal

Molecular and Cellular BiologyAmerican Society For Microbiology

Published: Jun 1, 1993

There are no references for this article.