Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein

Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes... Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein Benjamin L. Ebert 1 , 2 and H. Franklin Bunn 1 , * Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 1 and Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139 2 ABSTRACT Molecular adaptation to hypoxia depends on the binding of hypoxia-inducible factor 1 (HIF-1) to cognate response elements in oxygen-regulated genes. In addition, adjacent sequences are required for hypoxia-inducible transcription. To investigate the mechanism of interaction between these cis -acting sequences, the multiprotein complex binding to the lactate dehydrogenase A (LDH-A) promoter was characterized. The involvement of HIF-1, CREB-1/ATF-1, and p300/CREB binding protein (CBP) was demonstrated by techniques documenting in vitro binding, in combination with transient transfections that test the in vivo functional importance of each protein. In both the LDH-A promoter and the erythropoietin 3′ enhancer, formation of multiprotein complexes was analyzed by using biotinylated probes encompassing functionally critical cis -acting sequences. Strong binding of p300/CBP required interactions with multiple DNA binding proteins. Thus, the necessity of transcription factor binding sites adjacent to a HIF-1 site for hypoxically inducible transcription may be due to the requirement of p300 to interact with multiple transcription factors for high-affinity binding and activation of transcription. Since it has been found to interact with a wide range of transcription factors, p300 is likely to play a similar role in other genes, mediating interactions between DNA binding proteins, thereby activating stimulus-specific and tissue-specific gene transcription. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Biology American Society For Microbiology

Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein

Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein

Molecular and Cellular Biology , Volume 18 (7): 4089 – Jul 1, 1998

Abstract

Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein Benjamin L. Ebert 1 , 2 and H. Franklin Bunn 1 , * Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 1 and Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139 2 ABSTRACT Molecular adaptation to hypoxia depends on the binding of hypoxia-inducible factor 1 (HIF-1) to cognate response elements in oxygen-regulated genes. In addition, adjacent sequences are required for hypoxia-inducible transcription. To investigate the mechanism of interaction between these cis -acting sequences, the multiprotein complex binding to the lactate dehydrogenase A (LDH-A) promoter was characterized. The involvement of HIF-1, CREB-1/ATF-1, and p300/CREB binding protein (CBP) was demonstrated by techniques documenting in vitro binding, in combination with transient transfections that test the in vivo functional importance of each protein. In both the LDH-A promoter and the erythropoietin 3′ enhancer, formation of multiprotein complexes was analyzed by using biotinylated probes encompassing functionally critical cis -acting sequences. Strong binding of p300/CBP required interactions with multiple DNA binding proteins. Thus, the necessity of transcription factor binding sites adjacent to a HIF-1 site for hypoxically inducible transcription may be due to the requirement of p300 to interact with multiple transcription factors for high-affinity binding and activation of transcription. Since it has been found to interact with a wide range of transcription factors, p300 is likely to play a similar role in other genes, mediating interactions between DNA binding proteins, thereby activating stimulus-specific and tissue-specific gene transcription.

Loading next page...
 
/lp/american-society-for-microbiology/regulation-of-transcription-by-hypoxia-requires-a-multiprotein-complex-XFKOBEKP2z

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1998 by the American society for Microbiology.
ISSN
0270-7306
eISSN
1098-5549
Publisher site
See Article on Publisher Site

Abstract

Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein Benjamin L. Ebert 1 , 2 and H. Franklin Bunn 1 , * Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 1 and Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139 2 ABSTRACT Molecular adaptation to hypoxia depends on the binding of hypoxia-inducible factor 1 (HIF-1) to cognate response elements in oxygen-regulated genes. In addition, adjacent sequences are required for hypoxia-inducible transcription. To investigate the mechanism of interaction between these cis -acting sequences, the multiprotein complex binding to the lactate dehydrogenase A (LDH-A) promoter was characterized. The involvement of HIF-1, CREB-1/ATF-1, and p300/CREB binding protein (CBP) was demonstrated by techniques documenting in vitro binding, in combination with transient transfections that test the in vivo functional importance of each protein. In both the LDH-A promoter and the erythropoietin 3′ enhancer, formation of multiprotein complexes was analyzed by using biotinylated probes encompassing functionally critical cis -acting sequences. Strong binding of p300/CBP required interactions with multiple DNA binding proteins. Thus, the necessity of transcription factor binding sites adjacent to a HIF-1 site for hypoxically inducible transcription may be due to the requirement of p300 to interact with multiple transcription factors for high-affinity binding and activation of transcription. Since it has been found to interact with a wide range of transcription factors, p300 is likely to play a similar role in other genes, mediating interactions between DNA binding proteins, thereby activating stimulus-specific and tissue-specific gene transcription.

Journal

Molecular and Cellular BiologyAmerican Society For Microbiology

Published: Jul 1, 1998

There are no references for this article.