Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Quantitative analysis of bacterial aerosols in two different dental clinic environments.

Quantitative analysis of bacterial aerosols in two different dental clinic environments. Quantitative analysis of bacterial aerosols in two different dental clinic environments. D Grenier Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Sainte-Foy, Québec, Canada. ABSTRACT Microbial aerosols are generated during dental treatments and may represent an important source of infection. This study was designed to quantify bacterial air contamination during dental treatments in both a closed dental operatory and a multichair dental clinic. Air was sampled by using a slit type of biological air sampler. Following air sampling, blood-supplemented Trypticase soy agar plates were incubated at 37 degrees C under anaerobic conditions for 7 days. The maximum levels of air contamination in the closed dental operatory were observed while dental treatments were being performed (four trials; 216 +/- 75 CFU/m3 for ultrasonic scaling treatments and 75 +/- 22 CFU/m3 for operative treatments). At 2 h after completion of the treatments, the bacterial counts were about the same as the pretreatment levels (12 to 14 CFU/m3). In the second part of the study, a multichair dental clinic was divided into four areas, and air contamination was monitored at each site. Three sites were located in active dental treatment areas, whereas no dental treatments were performed within an 11-m radius of the fourth site. At 3 h after the beginning of dental treatments, the highest bacterial counts were obtained in the three active dental treatment areas (76 to 114 CFU/m3). However, there was noticeable contamination in the inactive dental treatment area (42 CFU/m3). Thus, bacterial aerosols were able to spread into areas where there was no dental activity. My data show that dental treatments significantly increased the levels of bacterial air contamination in both a closed dental operatory and a multichair dental clinic.(ABSTRACT TRUNCATED AT 250 WORDS) CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Appl. Environ. Microbiol. August 1995 vol. 61 no. 8 3165-3168 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AEM Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Grenier, D. Search for related content PubMed PubMed citation Articles by Grenier, D. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 77, issue 23 Alert me to new issues of AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: http://intl- AEM .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-4"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied and Environmental Microbiology American Society For Microbiology

Quantitative analysis of bacterial aerosols in two different dental clinic environments.

Applied and Environmental Microbiology , Volume 61 (8): 3165 – Aug 1, 1995

Quantitative analysis of bacterial aerosols in two different dental clinic environments.

Applied and Environmental Microbiology , Volume 61 (8): 3165 – Aug 1, 1995

Abstract

Quantitative analysis of bacterial aerosols in two different dental clinic environments. D Grenier Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Sainte-Foy, Québec, Canada. ABSTRACT Microbial aerosols are generated during dental treatments and may represent an important source of infection. This study was designed to quantify bacterial air contamination during dental treatments in both a closed dental operatory and a multichair dental clinic. Air was sampled by using a slit type of biological air sampler. Following air sampling, blood-supplemented Trypticase soy agar plates were incubated at 37 degrees C under anaerobic conditions for 7 days. The maximum levels of air contamination in the closed dental operatory were observed while dental treatments were being performed (four trials; 216 +/- 75 CFU/m3 for ultrasonic scaling treatments and 75 +/- 22 CFU/m3 for operative treatments). At 2 h after completion of the treatments, the bacterial counts were about the same as the pretreatment levels (12 to 14 CFU/m3). In the second part of the study, a multichair dental clinic was divided into four areas, and air contamination was monitored at each site. Three sites were located in active dental treatment areas, whereas no dental treatments were performed within an 11-m radius of the fourth site. At 3 h after the beginning of dental treatments, the highest bacterial counts were obtained in the three active dental treatment areas (76 to 114 CFU/m3). However, there was noticeable contamination in the inactive dental treatment area (42 CFU/m3). Thus, bacterial aerosols were able to spread into areas where there was no dental activity. My data show that dental treatments significantly increased the levels of bacterial air contamination in both a closed dental operatory and a multichair dental clinic.(ABSTRACT TRUNCATED AT 250 WORDS) CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Appl. Environ. Microbiol. August 1995 vol. 61 no. 8 3165-3168 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AEM Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Grenier, D. Search for related content PubMed PubMed citation Articles by Grenier, D. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 77, issue 23 Alert me to new issues of AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: http://intl- AEM .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-4"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/quantitative-analysis-of-bacterial-aerosols-in-two-different-dental-T0p5ShMge8

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1995 by the American society for Microbiology.
ISSN
0099-2240
eISSN
1098-5336
Publisher site
See Article on Publisher Site

Abstract

Quantitative analysis of bacterial aerosols in two different dental clinic environments. D Grenier Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Sainte-Foy, Québec, Canada. ABSTRACT Microbial aerosols are generated during dental treatments and may represent an important source of infection. This study was designed to quantify bacterial air contamination during dental treatments in both a closed dental operatory and a multichair dental clinic. Air was sampled by using a slit type of biological air sampler. Following air sampling, blood-supplemented Trypticase soy agar plates were incubated at 37 degrees C under anaerobic conditions for 7 days. The maximum levels of air contamination in the closed dental operatory were observed while dental treatments were being performed (four trials; 216 +/- 75 CFU/m3 for ultrasonic scaling treatments and 75 +/- 22 CFU/m3 for operative treatments). At 2 h after completion of the treatments, the bacterial counts were about the same as the pretreatment levels (12 to 14 CFU/m3). In the second part of the study, a multichair dental clinic was divided into four areas, and air contamination was monitored at each site. Three sites were located in active dental treatment areas, whereas no dental treatments were performed within an 11-m radius of the fourth site. At 3 h after the beginning of dental treatments, the highest bacterial counts were obtained in the three active dental treatment areas (76 to 114 CFU/m3). However, there was noticeable contamination in the inactive dental treatment area (42 CFU/m3). Thus, bacterial aerosols were able to spread into areas where there was no dental activity. My data show that dental treatments significantly increased the levels of bacterial air contamination in both a closed dental operatory and a multichair dental clinic.(ABSTRACT TRUNCATED AT 250 WORDS) CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Appl. Environ. Microbiol. August 1995 vol. 61 no. 8 3165-3168 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AEM Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Grenier, D. Search for related content PubMed PubMed citation Articles by Grenier, D. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 77, issue 23 Alert me to new issues of AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: http://intl- AEM .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-4"); pageTracker._trackPageview();

Journal

Applied and Environmental MicrobiologyAmerican Society For Microbiology

Published: Aug 1, 1995

There are no references for this article.