Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Leishmania RNA virus 1-mediated cap-independent translation.

Leishmania RNA virus 1-mediated cap-independent translation. Leishmania RNA virus 1-mediated cap-independent translation. J A Maga , G Widmer and J H LeBowitz Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA. ABSTRACT Recently, a group of related Leishmania RNA viruses (Leishmania RNA virus 1 (LRV1)) has been isolated from Leishmania guyanensis and L. brasiliensis. These viruses persist in the cytoplasm and contain double-stranded RNA genomes. Miniexon sequences are absent from the 5' end of the viral RNA, and the 5' end of the viral RNA lacks a cap structure, suggesting that LRV1 has evolved a cap-independent mechanism of translation. Cap-independent translation of picornavirus genomic RNA requires a cis element, within the 5' untranslated region (UTR), referred to as an internal ribosome entry site (IRES). In order to find out if the 5' UTR of LRV1 possessed IRES activity, we modified a Leishmania expression vector, pX63NEO-GUS, so that it would produce a dicistronic transcript in which the neomycin phosphotransferase gene was separated from the downstream beta-glucuronidase (GUS) gene by the LRV1 5' UTR. High levels of GUS activity were detected in L. major stably transformed with this plasmid. Elimination of the first 120 nucleotides of the viral 5' UTR lowered GUS activity 10-fold. Furthermore, when the entire 5' UTR was eliminated, GUS activity was undetectable. These results, together with the absence of trans-spliced GUS transcripts, are consistent with the hypothesis that the 5' UTR of LRV1 functions as an IRES element. The ability to couple expression of genes via an IRES element should prove useful in genetic experiments with Leishmania spp. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Mol. Cell. Biol. September 1995 vol. 15 no. 9 4884-4889 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Maga, J. A. Articles by LeBowitz, J. H. Search for related content PubMed PubMed citation Articles by Maga, J. A. Articles by LeBowitz, J. H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Biology American Society For Microbiology

Leishmania RNA virus 1-mediated cap-independent translation.

Molecular and Cellular Biology , Volume 15 (9): 4884 – Sep 1, 1995

Leishmania RNA virus 1-mediated cap-independent translation.

Molecular and Cellular Biology , Volume 15 (9): 4884 – Sep 1, 1995

Abstract

Leishmania RNA virus 1-mediated cap-independent translation. J A Maga , G Widmer and J H LeBowitz Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA. ABSTRACT Recently, a group of related Leishmania RNA viruses (Leishmania RNA virus 1 (LRV1)) has been isolated from Leishmania guyanensis and L. brasiliensis. These viruses persist in the cytoplasm and contain double-stranded RNA genomes. Miniexon sequences are absent from the 5' end of the viral RNA, and the 5' end of the viral RNA lacks a cap structure, suggesting that LRV1 has evolved a cap-independent mechanism of translation. Cap-independent translation of picornavirus genomic RNA requires a cis element, within the 5' untranslated region (UTR), referred to as an internal ribosome entry site (IRES). In order to find out if the 5' UTR of LRV1 possessed IRES activity, we modified a Leishmania expression vector, pX63NEO-GUS, so that it would produce a dicistronic transcript in which the neomycin phosphotransferase gene was separated from the downstream beta-glucuronidase (GUS) gene by the LRV1 5' UTR. High levels of GUS activity were detected in L. major stably transformed with this plasmid. Elimination of the first 120 nucleotides of the viral 5' UTR lowered GUS activity 10-fold. Furthermore, when the entire 5' UTR was eliminated, GUS activity was undetectable. These results, together with the absence of trans-spliced GUS transcripts, are consistent with the hypothesis that the 5' UTR of LRV1 functions as an IRES element. The ability to couple expression of genes via an IRES element should prove useful in genetic experiments with Leishmania spp. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Mol. Cell. Biol. September 1995 vol. 15 no. 9 4884-4889 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Maga, J. A. Articles by LeBowitz, J. H. Search for related content PubMed PubMed citation Articles by Maga, J. A. Articles by LeBowitz, J. H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/leishmania-rna-virus-1-mediated-cap-independent-translation-5tuKeS1oh1

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1995 by the American society for Microbiology.
ISSN
0270-7306
eISSN
1098-5549
Publisher site
See Article on Publisher Site

Abstract

Leishmania RNA virus 1-mediated cap-independent translation. J A Maga , G Widmer and J H LeBowitz Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA. ABSTRACT Recently, a group of related Leishmania RNA viruses (Leishmania RNA virus 1 (LRV1)) has been isolated from Leishmania guyanensis and L. brasiliensis. These viruses persist in the cytoplasm and contain double-stranded RNA genomes. Miniexon sequences are absent from the 5' end of the viral RNA, and the 5' end of the viral RNA lacks a cap structure, suggesting that LRV1 has evolved a cap-independent mechanism of translation. Cap-independent translation of picornavirus genomic RNA requires a cis element, within the 5' untranslated region (UTR), referred to as an internal ribosome entry site (IRES). In order to find out if the 5' UTR of LRV1 possessed IRES activity, we modified a Leishmania expression vector, pX63NEO-GUS, so that it would produce a dicistronic transcript in which the neomycin phosphotransferase gene was separated from the downstream beta-glucuronidase (GUS) gene by the LRV1 5' UTR. High levels of GUS activity were detected in L. major stably transformed with this plasmid. Elimination of the first 120 nucleotides of the viral 5' UTR lowered GUS activity 10-fold. Furthermore, when the entire 5' UTR was eliminated, GUS activity was undetectable. These results, together with the absence of trans-spliced GUS transcripts, are consistent with the hypothesis that the 5' UTR of LRV1 functions as an IRES element. The ability to couple expression of genes via an IRES element should prove useful in genetic experiments with Leishmania spp. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Mol. Cell. Biol. September 1995 vol. 15 no. 9 4884-4889 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Maga, J. A. Articles by LeBowitz, J. H. Search for related content PubMed PubMed citation Articles by Maga, J. A. Articles by LeBowitz, J. H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview();

Journal

Molecular and Cellular BiologyAmerican Society For Microbiology

Published: Sep 1, 1995

There are no references for this article.