Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

In vitro selection of resistant Helicobacter pylori.

In vitro selection of resistant Helicobacter pylori. In vitro selection of resistant Helicobacter pylori. C E Haas , D E Nix and J J Schentag Center for Clinical Pharmacy Research, School of Pharmacy, State University of New York, Buffalo. ABSTRACT Four strains of Helicobacter pylori were subjected to an in vitro serial passage technique to compare the propensity of the organisms to develop resistance to seven classes of antibacterial agents. The passages were made on serially doubling concentrations of antibacterial agents incorporated into agar starting at one-half the base-line MIC. The frequency of spontaneous resistance was also determined for each strain at four and eight times the MIC of each antibacterial agent. Strains resistant to ciprofloxacin, metronidazole, erythromycin, and tobramycin were isolated. The experiments failed to select organisms resistant to bismuth subsalicylate, furazolidone, or amoxicillin, although the MIC of amoxicillin was increased 4- to 16-fold. With the exception of erythromycin, organisms with the selected resistance were stable after at least three passages on antibacterial agent-free medium. Spontaneous resistance rates were generally of a low magnitude and were not predictive of the serial passage results. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.34.9.1637 Antimicrob. Agents Chemother. September 1990 vol. 34 no. 9 1637-1641 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Haas, C. E. Articles by Schentag, J. J. Search for related content PubMed PubMed citation Articles by Haas, C. E. Articles by Schentag, J. J. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antimicrobial Agents and Chemotherapy American Society For Microbiology

In vitro selection of resistant Helicobacter pylori.

Antimicrobial Agents and Chemotherapy , Volume 34 (9): 1637 – Sep 1, 1990

In vitro selection of resistant Helicobacter pylori.

Antimicrobial Agents and Chemotherapy , Volume 34 (9): 1637 – Sep 1, 1990

Abstract

In vitro selection of resistant Helicobacter pylori. C E Haas , D E Nix and J J Schentag Center for Clinical Pharmacy Research, School of Pharmacy, State University of New York, Buffalo. ABSTRACT Four strains of Helicobacter pylori were subjected to an in vitro serial passage technique to compare the propensity of the organisms to develop resistance to seven classes of antibacterial agents. The passages were made on serially doubling concentrations of antibacterial agents incorporated into agar starting at one-half the base-line MIC. The frequency of spontaneous resistance was also determined for each strain at four and eight times the MIC of each antibacterial agent. Strains resistant to ciprofloxacin, metronidazole, erythromycin, and tobramycin were isolated. The experiments failed to select organisms resistant to bismuth subsalicylate, furazolidone, or amoxicillin, although the MIC of amoxicillin was increased 4- to 16-fold. With the exception of erythromycin, organisms with the selected resistance were stable after at least three passages on antibacterial agent-free medium. Spontaneous resistance rates were generally of a low magnitude and were not predictive of the serial passage results. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.34.9.1637 Antimicrob. Agents Chemother. September 1990 vol. 34 no. 9 1637-1641 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Haas, C. E. Articles by Schentag, J. J. Search for related content PubMed PubMed citation Articles by Haas, C. E. Articles by Schentag, J. J. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/in-vitro-selection-of-resistant-helicobacter-pylori-d9O8XFK0kV

References (21)

Publisher
American Society For Microbiology
Copyright
Copyright © 1990 by the American society for Microbiology.
ISSN
0066-4804
eISSN
1098-6596
DOI
10.1128/AAC.34.9.1637
Publisher site
See Article on Publisher Site

Abstract

In vitro selection of resistant Helicobacter pylori. C E Haas , D E Nix and J J Schentag Center for Clinical Pharmacy Research, School of Pharmacy, State University of New York, Buffalo. ABSTRACT Four strains of Helicobacter pylori were subjected to an in vitro serial passage technique to compare the propensity of the organisms to develop resistance to seven classes of antibacterial agents. The passages were made on serially doubling concentrations of antibacterial agents incorporated into agar starting at one-half the base-line MIC. The frequency of spontaneous resistance was also determined for each strain at four and eight times the MIC of each antibacterial agent. Strains resistant to ciprofloxacin, metronidazole, erythromycin, and tobramycin were isolated. The experiments failed to select organisms resistant to bismuth subsalicylate, furazolidone, or amoxicillin, although the MIC of amoxicillin was increased 4- to 16-fold. With the exception of erythromycin, organisms with the selected resistance were stable after at least three passages on antibacterial agent-free medium. Spontaneous resistance rates were generally of a low magnitude and were not predictive of the serial passage results. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.34.9.1637 Antimicrob. Agents Chemother. September 1990 vol. 34 no. 9 1637-1641 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Haas, C. E. Articles by Schentag, J. J. Search for related content PubMed PubMed citation Articles by Haas, C. E. Articles by Schentag, J. J. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview();

Journal

Antimicrobial Agents and ChemotherapyAmerican Society For Microbiology

Published: Sep 1, 1990

There are no references for this article.