Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression.

Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene... Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. X Sun , H Shimizu and K Yamamoto Department of Molecular Pathology, Kanazawa University, Ishikawa, Japan. ABSTRACT p53 is recruited in response to DNA-damaging genotoxic stress and plays an important role in maintaining the integrity of the genome. We show that exposure of cells to various genotoxic agents, including anticancer drugs such as mitomycin and 5-fluorouracil, results in an increase in p53 mRNA levels and in p53 promoter activation, indicating that the p53 genotoxic stress response is partly regulated at the transcriptional level. The results of the p53 promoter analysis show that a novel p53 promoter element, termed a p53 core promoter element (from -70 to -46), is essential for basal p53 promoter activity and promoter activation induced by genotoxic agents such as anticancer drugs and UV. Although a kappa B motif partially overlaps with this element and those genotoxic agents activate NF-kappa B, it does not play a major role in p53 genotoxic stress response: NF-kappa B p65 expression did not induce significant p53 promoter activation, and NF-kappa B inhibitors (N-acetyl cysteine and I kappa B alpha) did not inhibit genotoxic stress-inducible p53 promoter activation. Finally, we characterized nuclear factors, the binding of which to the p53 core promoter element is essential for basal p53 promoter activity and p53 promoter activation induced by genotoxic agents. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Mol. Cell. Biol. August 1995 vol. 15 no. 8 4489-4496 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Sun, X. Articles by Yamamoto, K. Search for related content PubMed PubMed citation Articles by Sun, X. Articles by Yamamoto, K. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Biology American Society For Microbiology

Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression.

Molecular and Cellular Biology , Volume 15 (8): 4489 – Aug 1, 1995

Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression.

Molecular and Cellular Biology , Volume 15 (8): 4489 – Aug 1, 1995

Abstract

Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. X Sun , H Shimizu and K Yamamoto Department of Molecular Pathology, Kanazawa University, Ishikawa, Japan. ABSTRACT p53 is recruited in response to DNA-damaging genotoxic stress and plays an important role in maintaining the integrity of the genome. We show that exposure of cells to various genotoxic agents, including anticancer drugs such as mitomycin and 5-fluorouracil, results in an increase in p53 mRNA levels and in p53 promoter activation, indicating that the p53 genotoxic stress response is partly regulated at the transcriptional level. The results of the p53 promoter analysis show that a novel p53 promoter element, termed a p53 core promoter element (from -70 to -46), is essential for basal p53 promoter activity and promoter activation induced by genotoxic agents such as anticancer drugs and UV. Although a kappa B motif partially overlaps with this element and those genotoxic agents activate NF-kappa B, it does not play a major role in p53 genotoxic stress response: NF-kappa B p65 expression did not induce significant p53 promoter activation, and NF-kappa B inhibitors (N-acetyl cysteine and I kappa B alpha) did not inhibit genotoxic stress-inducible p53 promoter activation. Finally, we characterized nuclear factors, the binding of which to the p53 core promoter element is essential for basal p53 promoter activity and p53 promoter activation induced by genotoxic agents. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Mol. Cell. Biol. August 1995 vol. 15 no. 8 4489-4496 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Sun, X. Articles by Yamamoto, K. Search for related content PubMed PubMed citation Articles by Sun, X. Articles by Yamamoto, K. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/identification-of-a-novel-p53-promoter-element-involved-in-genotoxic-ak5RXd50Pj

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1995 by the American society for Microbiology.
ISSN
0270-7306
eISSN
1098-5549
Publisher site
See Article on Publisher Site

Abstract

Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. X Sun , H Shimizu and K Yamamoto Department of Molecular Pathology, Kanazawa University, Ishikawa, Japan. ABSTRACT p53 is recruited in response to DNA-damaging genotoxic stress and plays an important role in maintaining the integrity of the genome. We show that exposure of cells to various genotoxic agents, including anticancer drugs such as mitomycin and 5-fluorouracil, results in an increase in p53 mRNA levels and in p53 promoter activation, indicating that the p53 genotoxic stress response is partly regulated at the transcriptional level. The results of the p53 promoter analysis show that a novel p53 promoter element, termed a p53 core promoter element (from -70 to -46), is essential for basal p53 promoter activity and promoter activation induced by genotoxic agents such as anticancer drugs and UV. Although a kappa B motif partially overlaps with this element and those genotoxic agents activate NF-kappa B, it does not play a major role in p53 genotoxic stress response: NF-kappa B p65 expression did not induce significant p53 promoter activation, and NF-kappa B inhibitors (N-acetyl cysteine and I kappa B alpha) did not inhibit genotoxic stress-inducible p53 promoter activation. Finally, we characterized nuclear factors, the binding of which to the p53 core promoter element is essential for basal p53 promoter activity and p53 promoter activation induced by genotoxic agents. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article Mol. Cell. Biol. August 1995 vol. 15 no. 8 4489-4496 » Abstract PDF Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of MCB Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Sun, X. Articles by Yamamoto, K. Search for related content PubMed PubMed citation Articles by Sun, X. Articles by Yamamoto, K. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue January 2012, volume 32, issue 1 Spotlights in the Current Issue Architecture of the Yeast RNA Polymerase II Open Complex State and Regulation by TFIIF GATA-1 Establishes Cell-Type-Specific Autophagy as a Developmental Program Prickle Phosphorylation Regulates Its Localization and β-Catenin-Independent Wnt Signaling Alert me to new issues of MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2011 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: http://intl- MCB .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-11"); pageTracker._trackPageview();

Journal

Molecular and Cellular BiologyAmerican Society For Microbiology

Published: Aug 1, 1995

There are no references for this article.