Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Comparison of two bromovinyl nucleoside analogs, 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil and E-5-(2-bromovinyl)-2'-deoxyuridine, with acyclovir in inhibition of Epstein-Barr virus replication.

Comparison of two bromovinyl nucleoside analogs,... Comparison of two bromovinyl nucleoside analogs, 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil and E-5-(2-bromovinyl)-2'-deoxyuridine, with acyclovir in inhibition of Epstein-Barr virus replication. J C Lin and H Machida Lineberger Cancer Research Center, School of Medicine, University of North Carolina, Chapel Hill 27514. ABSTRACT The effect of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU), a new antiviral drug, on Epstein-Barr virus (EBV) was studied and compared with those of E-5-(2-bromovinyl)-2'-deoxyuridine (BVdU) and acyclovir (ACV). BV-araU effectively inhibited EBV replication both in superinfected Raji cells and in virus producer P3HR-1(LS) cells, as determined by density gradient centrifugation, in situ cytohybridization with an EBV DNA probe, and cRNA-DNA hybridization. The 50% effective doses for viral DNA replication were 0.26, 0.06, and 0.3 microM for BV-araU, BVdU, and ACV, respectively. The relative efficacy on the basis of the in vitro therapeutic index was BVdU (6,500) greater than BV-araU (1,500) greater than ACV (850). Synthesis of EBV-induced polypeptides with molecular weights of 145,000 and 140,000 was inhibited by these drugs. Kinetic analysis of reversibility of inhibition of EBV DNA replication after removal of the drugs indicated that BV-araU, like BVdU, has a more prolonged inhibitory effect than ACV. These results indicate that the 2' OH group in the arabinosyl configuration of BV-araU results in marked reduction in anti-EBV activity while slightly diminishing cytotoxicity. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.32.7.1068 Antimicrob. Agents Chemother. July 1988 vol. 32 no. 7 1068-1072 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Lin, J. C. Articles by Machida, H. Search for related content PubMed PubMed citation Articles by Lin, J. C. Articles by Machida, H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview(); http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antimicrobial Agents and Chemotherapy American Society For Microbiology

Comparison of two bromovinyl nucleoside analogs, 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil and E-5-(2-bromovinyl)-2'-deoxyuridine, with acyclovir in inhibition of Epstein-Barr virus replication.

Antimicrobial Agents and Chemotherapy , Volume 32 (7): 1068 – Jul 1, 1988

Comparison of two bromovinyl nucleoside analogs, 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil and E-5-(2-bromovinyl)-2'-deoxyuridine, with acyclovir in inhibition of Epstein-Barr virus replication.

Antimicrobial Agents and Chemotherapy , Volume 32 (7): 1068 – Jul 1, 1988

Abstract

Comparison of two bromovinyl nucleoside analogs, 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil and E-5-(2-bromovinyl)-2'-deoxyuridine, with acyclovir in inhibition of Epstein-Barr virus replication. J C Lin and H Machida Lineberger Cancer Research Center, School of Medicine, University of North Carolina, Chapel Hill 27514. ABSTRACT The effect of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU), a new antiviral drug, on Epstein-Barr virus (EBV) was studied and compared with those of E-5-(2-bromovinyl)-2'-deoxyuridine (BVdU) and acyclovir (ACV). BV-araU effectively inhibited EBV replication both in superinfected Raji cells and in virus producer P3HR-1(LS) cells, as determined by density gradient centrifugation, in situ cytohybridization with an EBV DNA probe, and cRNA-DNA hybridization. The 50% effective doses for viral DNA replication were 0.26, 0.06, and 0.3 microM for BV-araU, BVdU, and ACV, respectively. The relative efficacy on the basis of the in vitro therapeutic index was BVdU (6,500) greater than BV-araU (1,500) greater than ACV (850). Synthesis of EBV-induced polypeptides with molecular weights of 145,000 and 140,000 was inhibited by these drugs. Kinetic analysis of reversibility of inhibition of EBV DNA replication after removal of the drugs indicated that BV-araU, like BVdU, has a more prolonged inhibitory effect than ACV. These results indicate that the 2' OH group in the arabinosyl configuration of BV-araU results in marked reduction in anti-EBV activity while slightly diminishing cytotoxicity. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.32.7.1068 Antimicrob. Agents Chemother. July 1988 vol. 32 no. 7 1068-1072 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Lin, J. C. Articles by Machida, H. Search for related content PubMed PubMed citation Articles by Lin, J. C. Articles by Machida, H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview();

Loading next page...
 
/lp/american-society-for-microbiology/comparison-of-two-bromovinyl-nucleoside-analogs-1-beta-d-pZJee47auB

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
American Society For Microbiology
Copyright
Copyright © 1988 by the American society for Microbiology.
ISSN
0066-4804
eISSN
1098-6596
DOI
10.1128/AAC.32.7.1068
Publisher site
See Article on Publisher Site

Abstract

Comparison of two bromovinyl nucleoside analogs, 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil and E-5-(2-bromovinyl)-2'-deoxyuridine, with acyclovir in inhibition of Epstein-Barr virus replication. J C Lin and H Machida Lineberger Cancer Research Center, School of Medicine, University of North Carolina, Chapel Hill 27514. ABSTRACT The effect of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU), a new antiviral drug, on Epstein-Barr virus (EBV) was studied and compared with those of E-5-(2-bromovinyl)-2'-deoxyuridine (BVdU) and acyclovir (ACV). BV-araU effectively inhibited EBV replication both in superinfected Raji cells and in virus producer P3HR-1(LS) cells, as determined by density gradient centrifugation, in situ cytohybridization with an EBV DNA probe, and cRNA-DNA hybridization. The 50% effective doses for viral DNA replication were 0.26, 0.06, and 0.3 microM for BV-araU, BVdU, and ACV, respectively. The relative efficacy on the basis of the in vitro therapeutic index was BVdU (6,500) greater than BV-araU (1,500) greater than ACV (850). Synthesis of EBV-induced polypeptides with molecular weights of 145,000 and 140,000 was inhibited by these drugs. Kinetic analysis of reversibility of inhibition of EBV DNA replication after removal of the drugs indicated that BV-araU, like BVdU, has a more prolonged inhibitory effect than ACV. These results indicate that the 2' OH group in the arabinosyl configuration of BV-araU results in marked reduction in anti-EBV activity while slightly diminishing cytotoxicity. CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? « Previous | Next Article » Table of Contents This Article doi: 10.1128/​AAC.32.7.1068 Antimicrob. Agents Chemother. July 1988 vol. 32 no. 7 1068-1072 » Abstract PDF Classifications Research Article Services Email this article to a colleague Similar articles in ASM journals Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Alert me to new issues of AAC Download to citation manager Reprints and Permissions Copyright Information Books from ASM Press MicrobeWorld Citing Articles Load citing article information Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Lin, J. C. Articles by Machida, H. Search for related content PubMed PubMed citation Articles by Lin, J. C. Articles by Machida, H. Related Content Load related web page information Social Bookmarking CiteULike Connotea Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter What's this? current issue December 2011, volume 55, issue 12 Alert me to new issues of AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2011 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: http://intl- AAC .asm.org | More Info» var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); var pageTracker = _gat._getTracker("UA-5821458-3"); pageTracker._trackPageview();

Journal

Antimicrobial Agents and ChemotherapyAmerican Society For Microbiology

Published: Jul 1, 1988

There are no references for this article.