Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Whole-Genome Scanning by Array Comparative Genomic Hybridization as a Clinical Tool for Risk Assessment in Chronic Lymphocytic Leukemia

Whole-Genome Scanning by Array Comparative Genomic Hybridization as a Clinical Tool for Risk... Array-based comparative genomic hybridization (array CGH) provides a powerful method for simultaneous genome-wide scanning and prognostic marker assessment in chronic lymphocytic leukemia (CLL). In the current study, commercially available bacterial artificial chromosome and oligonucleotide array CGH platforms were used to identify chromosomal alterations of prognostic significance in 174 CLL cases. Tumor genomes were initially analyzed by bacterial artificial chromosome array CGH followed by confirmation and breakpoint mapping using oligonucleotide arrays. Genomic changes involving loci currently interrogated by fluorescence in situ hybridization (FISH) panels were detected in 155 cases (89%) at expected frequencies: 13q14 loss (47%), trisomy 12 (13%), 11q loss (11%), 6q loss (7.5%), and 17p loss (4.6%). Genomic instability was the second most commonly identified alteration of prognostic significance with three or more alterations involving loci not interrogated by FISH panels identified in 37 CLL cases (21%). A subset of 48 CLL cases analyzed by six-probe FISH panels (288 total hybridizations) was concordant with array CGH results for 275 hybridizations (95.5%); 13 hybridizations (4.5%) were discordant because of clonal populations that comprised less than 30% of the sample. Array CGH is a powerful, cost-effective tool for genome-wide risk assessment in the clinical evaluation of CLL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Diagnostics American Society for Investigative Pathology

Whole-Genome Scanning by Array Comparative Genomic Hybridization as a Clinical Tool for Risk Assessment in Chronic Lymphocytic Leukemia

Journal of Molecular Diagnostics , Volume 10 (5): 442 – Sep 1, 2008

Abstract

Array-based comparative genomic hybridization (array CGH) provides a powerful method for simultaneous genome-wide scanning and prognostic marker assessment in chronic lymphocytic leukemia (CLL). In the current study, commercially available bacterial artificial chromosome and oligonucleotide array CGH platforms were used to identify chromosomal alterations of prognostic significance in 174 CLL cases. Tumor genomes were initially analyzed by bacterial artificial chromosome array CGH followed by confirmation and breakpoint mapping using oligonucleotide arrays. Genomic changes involving loci currently interrogated by fluorescence in situ hybridization (FISH) panels were detected in 155 cases (89%) at expected frequencies: 13q14 loss (47%), trisomy 12 (13%), 11q loss (11%), 6q loss (7.5%), and 17p loss (4.6%). Genomic instability was the second most commonly identified alteration of prognostic significance with three or more alterations involving loci not interrogated by FISH panels identified in 37 CLL cases (21%). A subset of 48 CLL cases analyzed by six-probe FISH panels (288 total hybridizations) was concordant with array CGH results for 275 hybridizations (95.5%); 13 hybridizations (4.5%) were discordant because of clonal populations that comprised less than 30% of the sample. Array CGH is a powerful, cost-effective tool for genome-wide risk assessment in the clinical evaluation of CLL.

Loading next page...
 
/lp/american-society-for-investigative-pathology/whole-genome-scanning-by-array-comparative-genomic-hybridization-as-a-hqgwuFw08J

References (30)

Publisher
American Society for Investigative Pathology
Copyright
Copyright © 2008 by the American Society for Investigative Pathology and the Association for Molecular Pathology.
ISSN
1525-1578
eISSN
1525-1578
DOI
10.2353/jmoldx.2008.080033
pmid
18687794
Publisher site
See Article on Publisher Site

Abstract

Array-based comparative genomic hybridization (array CGH) provides a powerful method for simultaneous genome-wide scanning and prognostic marker assessment in chronic lymphocytic leukemia (CLL). In the current study, commercially available bacterial artificial chromosome and oligonucleotide array CGH platforms were used to identify chromosomal alterations of prognostic significance in 174 CLL cases. Tumor genomes were initially analyzed by bacterial artificial chromosome array CGH followed by confirmation and breakpoint mapping using oligonucleotide arrays. Genomic changes involving loci currently interrogated by fluorescence in situ hybridization (FISH) panels were detected in 155 cases (89%) at expected frequencies: 13q14 loss (47%), trisomy 12 (13%), 11q loss (11%), 6q loss (7.5%), and 17p loss (4.6%). Genomic instability was the second most commonly identified alteration of prognostic significance with three or more alterations involving loci not interrogated by FISH panels identified in 37 CLL cases (21%). A subset of 48 CLL cases analyzed by six-probe FISH panels (288 total hybridizations) was concordant with array CGH results for 275 hybridizations (95.5%); 13 hybridizations (4.5%) were discordant because of clonal populations that comprised less than 30% of the sample. Array CGH is a powerful, cost-effective tool for genome-wide risk assessment in the clinical evaluation of CLL.

Journal

Journal of Molecular DiagnosticsAmerican Society for Investigative Pathology

Published: Sep 1, 2008

There are no references for this article.